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The numerical solution of the sedimentation phenomenon presents a significant challenge due to the 

presence of discontinuities at interfaces, characterized by three distinct regions: (i) clear liquid, (ii) constant 

solid concentration, and (iii) solid concentration varying from the initial to a maximum value. This problem 

is particularly relevant in the oil industry, where sedimentation is an essential unit operation in processes 

such as wastewater treatment, drilling fluid control, and phase separation during production. Discontinuities 

and abrupt variations in solid concentrations pose significant challenges for traditional numerical methods 

in solving this model type. In this study, three high-order numerical methods (Tangent of Hyperbola 

Interface Capturing, Weighted Essentially Non-Oscillatory, and High-Resolution Central Scheme) are 

employed to solve two classic case studies in the sedimentation process. In general, the results indicate that 

all three methods were effective in handling the discontinuities at the phase interfaces while maintaining 

the accuracy and stability of the solution. Moreover, although all methods performed satisfactorily in 

various aspects, the High-Resolution Central Scheme was found to be the most efficient in terms of 

computational time. 

Keywords: sedimentation, discontinuity, high-resolution schemes. 

 

A resolução numérica do fenômeno de sedimentação configura um grande desafio devido à presença de 

descontinuidades nas interfaces caracterizadas por três regiões distintas, a saber, (i) livre de sólidos; (ii) 

concentração de sólidos constante e (iii) concentração de sólidos varia de um valor inicial até um valor 

máximo. Este problema é particularmente relevante na indústria de petróleo, onde essa operação unitária é 

essencial em processos como o tratamento de águas residuais, controle de fluidos de perfuração e separação 

de fases durante a produção. A presença de descontinuidades e variações abruptas nas concentrações de 

sólidos apresenta desafios significantes para os tradicionais métodos numéricos usados para resolver este 

tipo de modelo. Nesta contribuição, três métodos numéricos com alta ordem, a saber, Captura de Interface 

por Tangente Hiperbólica, Essencialmente Não-Oscilatório Ponderado e Esquema Central de Alta 

Resolução são empregados para a resolução de dois estudos de caso clássicos no processo de sedimentação. 

Em geral, os resultados indicam que todos os três métodos foram eficazes no tratamento das 

descontinuidades nas interfaces de fase, mantendo a precisão e a estabilidade da solução. Além disso, 

embora todos os métodos tenham tido um desempenho satisfatório em vários aspectos, o Esquema Central 

de Alta Resolução foi considerado o mais eficiente em termos de tempo computacional.  

Palavras-chave: sedimentação, descontinuidade, esquemas de alta resolução. 

1. INTRODUCTION 

Sedimentation is a natural or induced physical process involving the transport and deposition 

of suspended particles in a fluid [1]. The phenomenon of sedimentation is widely used in various 

industries, including the oil industry, where its applicability can be highlighted in wastewater 

treatment, drilling fluid quality control, and phase separation processes in production and refining 

[2]. Sedimentation depends on factors such as particle size, shape, and density, as well as fluid 
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properties. Larger and denser particles settle more quickly, while smaller or less dense particles 

remain suspended for a longer time. The particles suspended in a fluid move due to forces such 

as gravity, drag force generated by the fluid’s viscosity, and buoyant force [1]. 

One of the main advantages of this process is its efficiency and relatively low cost compared 

to filtration and centrifugation. Additionally, it is important to note that sedimentation does not 

require the use of additional chemicals, thus reducing operational costs. Regarding energy 

requirements, this unit operation is passive, relying on gravity, unlike other separation processes. 

This makes it a more energy-efficient alternative, especially for treating large volumes of fluid. 

On the other hand, its limitations include low efficiency for treating very small or low-density 

particles, which can result in extended operational times. The sedimentation tank may also require 

a very large space to treat significant volumes. Finally, although the process is simple, it may 

require continuous monitoring to ensure proper particle separation. This may involve maintaining 

optimal conditions in the fluid, such as viscosity and temperature, as well as controlling 

suspension characteristics, such as solid concentration [1-3]. 

From a mathematical perspective, the numerical modeling of the sedimentation process 

presents significant challenges. This is due to the complexity of the phenomenon, which involves 

interactions between particles, external forces, turbulence, and compaction effects, as well as the 

presence of discontinuities and abrupt variations in solid concentrations [4-7]. In this context, 

traditional approaches such as Finite Difference, Finite Volume, and Finite Element methods may 

encounter difficulties related to accuracy and the treatment of discontinuities if they are not paired 

with appropriate techniques to discretize the advective and diffusive terms present in 

phenomenological models [8]. 

To overcome or minimize the impact of these difficulties, numerical methods known as high-

resolution schemes for dealing with nonlinear convective-diffusive terms have been proposed. 

The first scheme with this goal was proposed by Lax–Friedrichs (1954) [9]. Since then, several 

other schemes for this purpose have been developed. Total Variation Diminishing (TVD) 

schemes, such as the MUSCL (Monotone Upstream-centered Schemes for Conservation Law) 

scheme, can handle discontinuities without numerical oscillations by introducing slope or flux 

limiters, although they typically suffer from excessive numerical dissipation [10]. Nessyahu and 

Tadmor (1990) [11] proposed a central scheme that offers higher resolution than that developed 

by Lax–Friedrichs, while maintaining the simplicity of the approach without a Riemann solver. 

Liu et al. (1994) [12] proposed a new shock-capturing scheme called the Weighted Essentially 

Non-Oscillatory (WENO) strategy. The goal is to use a convex combination of all points to 

achieve the essentially non-oscillatory property, while also improving accuracy by one order. As 

a result, these schemes are based on cell averages and a total variation diminishing Runge-Kutta 

time discretization. Bürger and Concha (1998) [4] proposed a numerical scheme based on a            

non-oscillatory central difference method combined with a minmod limiter to control the flux. 

Kurganov and Tadmor (2000) [8] introduced a new family of central schemes called                    

High-Resolution Central Scheme (HRCS) that retain the simplicity of being independent of the 

problem's self-structure while enjoying much lower numerical viscosity compared to the 

approaches proposed by Lax–Friedrichs (1954) [9] and Nessyahu and Tadmor (1990) [11]. The 

main idea behind these central schemes is the use of more accurate information about local 

propagation velocities. It is worth noting that this scheme admits a particularly simple                      

semi-discrete formulation.  

Xiao et al. (2005) [13] proposed a simple and practical scheme called Tangent of Hyperbola 

Interface Capturing (THINC) for capturing moving interfaces or free boundaries in multi-phase 

simulations. This scheme uses the hyperbolic tangent function to calculate the numerical flux of 

the volume fraction function, providing a conservative, oscillation-free, and smearing-free 

solution for the volume fraction function, even for extremely distorted interfaces of arbitrary 

complexity. Bürger et al. (2008) [14] introduced a new family of numerical schemes to handle 

differential problems with discontinuous fluxes using a MUSCL approach combined with a 

Runge-Kutta time discretization to achieve second-order accuracy. Bürger et al. (2009) [15], 

Wang et al. (2010) [16] and Bürger et al. (2020) [17] proposed the Engquist-Osher scheme with 

extrapolation and flux-limiting functions to solve nonlinear convective equations. Diehl (2007) 

[18] estimated the batch-settling flux function for an ideal suspension from only two experiments 

considering the Godunov’s method. Bürger et al. (2013) [19] proposed a robust numerical method 
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to control discontinuities based on use of constitutive relations for hindered settling, compression 

and dispersion and the Godunov’s method. This same numerical approach was used to Diehl 

(2015) [20] to identify constitutive functions in scalar nonlinear convection–diffusion equations 

applied to batch sedimentation. In similar way, Rocha et al. (2020) [21] determine constitutive 

equations in the sedimentation process for thickened and clarified regions separately. 

In this work, three high-resolution numerical techniques (THINC, WENO and HRCS) are 

evaluated to solve the sedimentation problem. The aim is to assess whether these approaches are 

capable of handling discontinuities at the interfaces and ensuring the accuracy and stability of the 

solution during the integration of the partial differential model. For this purpose, two classical 

sedimentation problems are considered. 

This paper is organized as follows. Section 2 revisits the concepts of the sedimentation process, 

with a focus on its mathematical modeling. Section 3 provides a brief description of the THINC, 

WENO and HRCS strategies. Section 4 presents the numerical results considering a purely 

mathematical case study with an analytical solution to validate the methodologies, followed by 

two sedimentation case studies. Finally, the conclusions are presented in the last section. 

2. MATHEMATICAL MODELING 

As mentioned earlier, the sedimentation process is a complex phenomenon that describes the 

settling dynamics of particulate materials. From a physical point of view, sedimentation is a 

process by which solid particles suspended in a liquid or gas settle at the bottom of a container. 

This process occurs due to the action of gravity, which causes the heavier particles to settle first. 

The duration of this process can range from hours to days or even weeks, depending on the size 

and density of the particles involved. There are different types of sedimentation, depending on 

the characteristics of the particles and the environmental conditions. Some of the main types of 

sedimentation include gravitational sedimentation, centrifugation, and filtration sedimentation. 

Each of these processes has its own specific characteristics and applications [1-3, 22]. 

Fagundes et al. (2021) [23] describes the phenomenon of batch sedimentation along the time 

t as a moving boundary problem, where discontinuities move through space, delineating three 

distinct regions: (i) clear region (Region I: the local volumetric concentration of the solid phase 

(εs) is equal to zero); (ii) free settling region (Region II: εs is equal to initial volumetric 

concentration (εs0)); and (iii) compression region (Region III: εs0 < εs ≤ εsm, where εsm is the 

maximum volumetric concentration).  

Figure 1 presents the problem of subdomains with moving boundaries, represented by the 

descending and ascending interfaces on the z-axis, labeled by indices (1,2) and (3,4), respectively, 

with the origin of the positions at its base and the maximum height of the suspension at z=L (L is 

the length of the sedimentation column). 

 
Figure 1: Regions I, II and III of batch sedimentation delimited by discontinuities: descending interface 

(1,2) and ascending interface (3,4). 
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It is important to mention that the predicted discontinuities are singular surfaces that move 

through the spatial domain as functions of time, with z1,2(t) and z3,4(t) representing the positions 

of the descending and ascending interfaces, respectively, at a given time t. As mentioned by 

Fagundes et al. [23], each region delimited by discontinuities can be modeled separately using the 

continuity and motion equations derived from mixture theory, in addition to incorporating the 

appropriate constitutive equations for each case. For this purpose, Bürger and Wendland (1998) 

[24] developed the entropy boundary and jump conditions for the sedimentation problem 

considering compression. These conditions can be used to delimit each region during the 

simulation of the process.  

Mathematically, the sedimentation process is modeled considering the continuity and linear 

momentum equations. For a transient and unidirectional flow with density of solids constant, the 

set of equations for the solid phase is given by [4]: 
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 
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t z
 (1) 
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0 ,    =0 and 0 =  s s t z L  (3) 

 0,    0 and =0 = s sv t z  (4) 

 0,    0 and = = s sv t z L  (5) 
 

where vs is the velocity of the solid phase, ρs and ρf represent the densities of the solid and liquid 

phases, respectively, Ts is the stress tensor of the solid phase, mz is the resistive force and gz is the 

gravitational acceleration. 

 

To solve this model, it is necessary to define constitutive equations, used to characterize the 

material properties of the solid and liquid constituents of the suspension, as well as the stress 

tensor of the solid phase and the resistive force. An important simplification can be applied in this 

model [4-6, 20]. These works demonstrated that the inertial terms (local acceleration and 

convective flux of linear momentum) can be neglected in Eq. (2) when compared with other terms 

acting on the physical system. Based on this hypothesis, the velocity of the solid phase can be 

represented by an algebraic equation as a function of the local volumetric concentration of the 

solid phase and constitutive equations. Thus, Eq. (2) can be rewritten as: 
 

 ( )=s sv g  (6) 
 

were g(εs) is an expression that relates how velocity is a function of the solids concentration. 

 

As a consequence of this hypothesis, the original model can be represented by the following 

partial differential equation: 

 ( )( )
0

  
+ =

 

s ss
g

t z
 (7) 

 

subject to initial and boundary conditions. 

 

It is important to mention that, although the model has been simplified, the difficulties related 

to discontinuities and abrupt variations in the solids concentration profile and discontinuities in 

the solids density flux (g(εs)εs) are still present [4-6, 17, 20]. In this case, to solve a model with 

these characteristics, numerical methods capable of overcoming or minimizing such obstacles 

must be employed.  

3. NUMERICAL METHODS 

As mentioned earlier, the sedimentation process can be represented by Eq. (7). In order to 

present the numerical methods considered to solve this partial differential equation (PDE), 

consider the following Cauchy problem for scalar conservation laws: 
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 ( )
0
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u f u

t z
 (8) 

 

where t is the time, z is the spatial variable, u is the dependent variable and f(u) is a mathematical 

expression defined in terms of the dependent variable.  

 

This type of hyperbolic problem commonly appears in case studies involving fluid dynamics, 

wave propagation, and the modeling of phenomena with discontinuities [4, 5]. In this case, 

traditional numerical methods such as Finite Difference, Finite Volume and Finite Element 

Methods may be ineffective or inaccurate when applied to these problems due to numerical 

oscillations or loss of precision in the discontinuity regions [8]. Thus, it is necessary to employ 

numerical strategies that can accurately capture the abrupt transitions in the solution, such as 

shock waves, interface fronts, and other discontinuities [4, 5, 8].  

In the next sections, a brief description of Tangent of Hyperbola Interface Capturing (THINC), 

Weighted Essentially Non-Oscillatory (WENO) and High-Resolution Central Scheme (HRCS) 

strategies considered to solve Eq. (8) are presented.  

3.1 Tangent of Hyperbola Interface Capturing 

The Tangent of Hyperbola Interface Capturing (THINC), proposed by Xiao et al. (2005) [13], 

configures an efficient and accurate approach for solving PDEs with discontinuities, while 

maintaining conservation and numerical stability. The main idea is to approximate the solution 

u(t,z) by considering a smooth hyperbolic profile to represent the transition between different 

solution regions. Thus, the solution at the (n+1)-th time step is given by: 
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where fi+1/2 is the flux transported across boundary xi+1/2 during the interval ∆t, and computed as: 
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where Θi (Z) is the reconstruction interpolation function.  

The THINC scheme uses the piecewise hyperbolic tangent function: 
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where γ is equal to 1 for ui-1 < ui+1 and γ is equal to -1 for ui-1 > ui+1. β (=1.5) is a parameter defined 

to control the slope and the thickness of the jump. The value of the 
iZ  

parameter is computed as: 
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According to Xiao et al. (2005) [13], the main advantages of the THINC strategy are: (a) high 

precision in capturing interfaces: the use of the hyperbolic tangent provides a smooth and accurate 

transition between regions with different solution behaviors, which is particularly useful for 

capturing shock waves or phase transitions with high resolution; (b) numerical stability: the 

approach preserves stability even when the solution involves strong discontinuities; and (c) 

flexibility: this numerical strategy is applicable to a wide range of problems in fluid dynamics, 

compressible flows, and multi-phase simulations, making it a robust tool for handling problems 

with complex interfaces. In the specialized literature, different applications involving the THINC 
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strategy can be found, such as solution of multi-dimensional test cases [25, 26]; simulations of 

multi-phase interfacial flows in the presence of complex geometrical configuration [27]; and 

compressible gas dynamics with reactive fronts [28]. 

3.2 Weighted Essentially Non-Oscillatory 

The Weighted Essentially Non-Oscillatory (WENO) is a numerical approach proposed by Liu 

et al. (1994) [12] and utilized to solve PDE that involve discontinuities or abrupt transitions in the 

solutions. As mentioned by Jiang and Shu (1996) [29], this method is particularly effective in 

problems with compressible flows, shock waves, and other physical phenomena that exhibit 

discontinuities or irregular characteristics. In addition, WENO stands out for its ability to ensure 

precise and robust resolution, maintaining numerical stability and avoiding unwanted oscillations 

in the discontinuity regions [30]. 

In general, WENO is based on the concept of a weighted average of local approximations, 

where contributions from different stencils (interpolation patterns) are weighted to minimize 

oscillations in regions with discontinuities while maintaining a high order of accuracy in smooth 

regions [12]. From a mathematical perspective, the flux f(u) at each mesh point is calculated using 

the weighted combination formula given by:  
 

 
( )( 1/ 2) ( 1/ 2)

1
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
R i L if u f f

z
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where fL(i-1/2) and fR(i+1/2) are the local approximation of the flux, computed, as example, the fifth 

order finite difference WENO scheme has the flux given by: 
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where the three third order fluxes on three different stencils are given by: 
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The weights wi are given by: 
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where γ1=1/10, γ2=3/5 and γ3=3/10. 

 

The smoothness indicators βk given by: 
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Finally, σ is a small parameter that prevents division by zero (≈10-10). The WENO method uses 

an iterative procedure to dynamically adjust the weights wi, ensuring that the solution optimally 

adapts to the presence of discontinuities [12]. 
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For a first-order finite difference scheme, the approximation u is given by: 
 

 
( )1+ 

= −


n n n

i i i

t
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The WENO method offers several advantages, particularly for problems involving 

discontinuities or compressible flows [12]: (a) high precision in smooth regions and near 

discontinuities: this approach ensures high-order resolution in smooth regions of the solution and 

captures discontinuities without oscillations, maintaining high-order accuracy in                                    

non-discontinuous regions; (b) numerical stability: the method is designed to avoid unwanted 

oscillations in discontinuity regions, a common issue in traditional finite difference schemes; and 

(c) flexibility: WENO can be adapted to a wide range of PDE problems, being particularly useful 

for compressible flows, fluid dynamics, shock wave problems, and multi-phase interfaces. 

The WENO scheme has been used to solve problems in different areas, such as case studies 

involving PDEs and non-PDE problems [31, 32]; nonlinear hyperbolic conservation laws [33]; 

and modeling cavitation induced by an underwater explosion [34]. 

3.3 High-Resolution Central Scheme 

The High-Resolution Central Scheme (HRCS), proposed by Kurganov and Tadmor [8], 

represents a class of numerical strategies used to solve hyperbolic partial differential equations, 

particularly in problems involving discontinuities. These schemes are designed to solve 

conservative partial differential equations robustly and accurately, using a combination of central 

finite difference techniques and high-order resolution approaches, without the need for explicit 

solution reconstruction or large-scale smoothing operations. 

These schemes are characterized by their use of central fluxes and the implementation of a 

high-order resolution approach, meaning that, unlike conventional methods, HRCS do not rely on 

gradient interpolation of the solution but instead on an implicit reconstruction of the flux. This 

allows for more accurate capturing of discontinuities with high-order precision. 

In general terms, the central idea behind HRCS is the use of a central finite difference formula 

for the discretization of the divergence term (∂f(u)/∂z), combined with a flux averaging technique 

to update the solution values at the control volumes. The flux is computed to ensure the equation 

is solved conservatively and accurately, even in the presence of discontinuities [8]. 

For a control volume i (discretization in space), the solution update at time n+1 is given by: 
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where Hi+1/2 and Hi-1/2 represents the centrally located fluxes at the interfaces between cells i e i+1, 

and ∆z and ∆t are the step size in space and time, respectively. H is computed as: 
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where the local maximal speeds (λ) can be easily evaluated by following expression: 
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where the flux can be evaluated by considering a limiter flux, such as the minmod function [35]: 
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For two inputs, this limiter flux is given by: 
 

  

 

min , if  > 0,  > 0

minmod( , ) max , if 0, 0

0 otherwise




=  



a b a b

a b a b a b  (31) 

 

According to Kurganov and Tadmor (2000) [8], the HRCS method offers several advantages 

over other numerical methods used to solve hyperbolic PDEs: (a) high resolution in discontinuity 

regions: HRCS is specifically designed to capture discontinuities with high accuracy, avoiding 

numerical oscillations that are common in traditional discretization methods; (b) simplicity and 

robustness: by using a central flux approach without the need for complex interpolation or explicit 

solution reconstruction, HRCS is relatively simple to implement and highly robust; (c) good 

conservation properties: the method is conservative, meaning that physical quantities such as 

mass, energy, and momentum are well-preserved throughout the temporal evolution of the 

solution; (d) broad applicability: HRCS is applicable to a wide range of problems in fluid 

dynamics, shock waves, and other situations with non-smooth characteristics, such as phase 

transitions and interfaces. 

This strategy has been used to solve problems with different levels of complexity, such as                  

one-dimensional scalar hyperbolic equations, one-dimensional scalar (or systems) hyperbolic 

conservation laws, one-dimensional convection–diffusion equations, and two-dimensional 

equations [8]; astrophysical applications considering two-dimensional simulations [36];                    

one-dimensional and two-dimensional Riemann problems, and the double Mach reflection 

problem for Euler equations [37].  

4. RESULTS AND DISCUSSION 

In this section, the numerical methods briefly presented (THINC, WENO and HRCS) are 

applied. For this purpose, the following points should be highlighted: 
 

• The first case study is purely mathematical and aims to validate each numerical 

methodology, as well as assess the influence of the number of discretization points and 

the Courant–Friedrichs–Lewy (CFL) condition [38], defined as: 
 

 
=





u t
C

z
 (32) 

 

where C is the Courant number. Thus, if the constant C, the magnitude of u, and the value 

of ∆z (computed based on the number of discretization points (N) in the spatial direction) 

are known, the time step size (∆t) can be easily determined. It is important to mention 

that, for each application, the magnitude of u is computed considering the initial 

condition.  

• To assess the quality of the obtained solution (when the analytical solution is known), the 

Mean Absolute Error (L2) is considered: 
 

( )
0.5

2

2

1

1
( ) ( ) ( )

=

 
= − 
 


N

i

L N U i u i
N

 (33) 
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where U(i) and u(i) represent the analytical and numerical solutions evaluated at the point 

i, respectively.  

• The last two case studies describe classical applications in batch sedimentation, where 

the function f(u), as well as the initial and boundary conditions, are known. 

• All numerical routines were implemented using Scilab® software (version 6.6.1). 

• The processing time (PT) is calculated using a Desktop computer with an Intel Core i7-

4770 processor and 8GB of memory. 

5.1 Burger Equation 

First test case considers a classical Burger Equation: 
 

 ( )
0,  0 2π,  0 2

 
+ =    

 

u f u
z t

t z
 (34) 

 
21

( )
2

=f u u

 

(35) 

 (0, ) 0.5 sin( )= +u z z
 

(36) 

 3 2( ,0) ( ,2π) 0.0435 +0.2105 0.4112 0.4934= = − − +u t u t t t t
 

(37) 

 

As mentioned by Kurganov and Tadmor (2000) [8], this problem presents a shock 

discontinuity at the critical time t=1. The analytical solution for this problem is given by the 

evaluation of the following nonlinear equation: 
 

(0.5 sin( )) 0− + − =u z ut  (38) 

 

Table 1 shows the L2 norm at the final time (t=2), and processing time considering the THINC, 

WENO and HRCS strategies, different number of discretization points and C equal to 0.5.  

Table 1: L2 norm for the Burger Equation considering THINC, WENO and HRCS strategies (C=0.5). 

  THINC WENO HRCS 

N ∆t L2 PT (s) L2 PT (s) L2 PT (s) 

50 4.25×10-2 4.46×10-3 2.18×10-2 1.01×10-2 1.63×10-2 9.95×10-3 1.63×10-2 

100 2.10×10-2 2.32×10-3 2.49×10-2 5.19×10-3 1.87×10-2 4.94×10-3 1.87×10-2 

200 1.05×10-2 1.67×10-3 2.88×10-2 2.92×10-3 1.95×10-2 2.58×10-3 1.89×10-2 

300 6.99×10-3 1.59×10-3 1.49×10-1 2.22×10-3 3.51×10-2 1.87×10-3 1.95×10-2 

400 5.24×10-3 1.57×10-3 2.21×10-1 1.91×10-3 5.61×10-2 1.87×10-3 2.26×10-2 

500 4.19×10-3 1.37×10-3 2.97×10-1 1.52×10-3 8.97×10-2 5.93×10-4 3.74×10-2 

1000 2.09×10-3 3.02×10-4 8.60×10-1 5.39×10-4 3.83×10-1 2.75×10-4 2.06×10-1 

In this table it is possible to observe that, for each numerical method, the increase in the number 

of discretization points (and consequent reduction of the time interval ∆t) implies a reduction in 

the L2 norm, as expected. On the other hand, there is an increase in the time required for each 

numerical approach. Regarding each numerical method, it is possible to see that, in terms of the 

L2 norm, all results are similar (with alternation between each one). When evaluating the 

processing time, HRCS presented the best performance. 

The influence of the parameter C on obtained results considering N equal to 500 and a final 

time equal to 2 is presented in Table 2. In this table it is possible to observe that, in terms of L2 

norm, for each numerical approach the results are similar. As observed in the CFL condition (Eq. 

(32)), the increase of the parameter C implies an increasing of the time interval ∆t. Consequently, 

the processing time also is increased, as expected.      
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Table 2: L2 norm for the Burger Equation considering THINC, WENO and HRCS strategies (N=500). 

  THINC WENO HRCS 

C ∆t L2 PT (s) L2 PT (s) L2 PT (s) 

0.5 4.19×10-3 1.37×10-3 2.97×10-1 1.52×10-3 8.97×10-2 5.93×10-4 3.74×10-2 

0.6 5.03×10-3 1.40×10-3 2.22×10-1 1.54×10-3 8.75×10-2 5.99×10-4 3.69×10-2 

0.7 5.88×10-3 1.42×10-3 2.12×10-1 1.55×10-3 8.67×10-2 6.01×10-4 3.58×10-2 

0.8 6.71×10-3 1.43×10-3 2.02×10-1 1.58×10-3 8.55×10-2 6.29×10-4 3.41×10-2 

0.9 7.54×10-3 1.48×10-3 1.97×10-1 1.62×10-3 8.34×10-2 6.31×10-4 3.52×10-2 
 

Figure 2 presents the approximate solutions at the post-shock time (t=2) and the 3D profile. In 

Figures 2a, 2b and 2c, it is possible to observe the quality of the solution obtained by each 

numerical strategy when compared with the exact solution, i.e., all numerical approaches were 

able to obtain good estimates when compared with the analytical solution. The 3D profile is 

shown in Figure 2d, demonstrating the numerical difficulty of this application. 
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(a) THINC. (b) WENO. 
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(c) HRCS. (d) 3D (HCRS strategy). 

Figure 2: 2D and 3D profiles considering the THINC, WENO and HRCS strategies (N=500; C=0.5 and 

t=2). 

5.2 Bath Sedimentation (Nocoń, 2010) 

The second test case considers a transient one-dimensional modeling of a bath sedimentation 

process proposed by Nocoń (2010) [39]. In this model, it is assumed that: (i) the velocity of solid 

particles (vs) depends only on the local suspended solids concentration; (ii) only the vertical 

movement of particles is considered; (iii) the horizontal gradients in suspended solids 

concentration are negligible; and (iv) the movement of solid particles results only from 

gravitational settling.  

For this purpose, the velocity of solids particles is given by Nocón (2010) [39]: 
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 ( )( ) 4.2exp 0.14 ,  [cm/min] = −s s sv  (39) 

 

Figure 3 presents the velocity of solid particles and the solids flux density function (vs×εs) 

profiles considering Eq. (39) and 0 ≤ εs ≤ 50 g/L. These profiles are consistent with expectations, 

i.e.; initially, the velocity reaches its maximum value, and towards the end of the process (when 

the concentration reaches its maximum), the velocity becomes zero (since the sediment is 

compacting at the bottom of the settler, preventing further particle movement). On the other hand, 

at εs equal to 0 and 50 g/L, the solids flux density is approximately zero, as highlighted by Burger 

et al. (1998) [4]. 
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(a) Velocity profile. (b) Solids Flux Density (vs×εs). 
 

 

Figure 3: Velocity of solids particles and solids flux density function profiles for the first sedimentation 

case. 

The conservation of mass over the vertical axis (z-axis) of the settler and the initial and 

boundary conditions are given by following partial differential equation: 
 

 ( )
0,  0 80 cm,  0 30min

 
+ =    

 

s ss
v

z t
t z

 (40) 

 
0(0, )  g/L =s sz

 
(41) 

 
0  g L, 0.1 min

( ,0)
0  g L, otherwise





= 


s

s

t
t

 
(42) 

 ( ,80)
0


=



s t

z  (43) 

 

Equation (41) describes the initial distribution of suspended solids throughout the equipment 

(this is assumed to be constant and equal to 4 g/L), i.e., the contents of the settler are perfectly 

mixed at the beginning of the process. The first boundary condition (Eq. (42)) indicates that for t 

less than 0.1, the solids concentration at z equal to zero is equal to the initial concentration; 

otherwise, it is equal to zero. Finally, the second boundary condition (Eq. (43)) states that the 

solids concentration is maximum when z is equal to 80 cm. It is important to note that the 

condition given by Eq. (42) represents a discontinuity in the solids concentration, complicating 

the numerical integration of the physical model. 

Figure 4 presents the solids concentration profiles at the final time considering the THINC, 

WENO, and HRCS strategies, different values for the number of discretization points and C equal 

to 0.5. From a physical point of view, the results presented in Figures 4a, 4b and 4c are consistent, 

i.e.; at time equal to 30 min, the solids concentration throughout most of the settler is zero, 

reaching its maximum value when z is equal to 80 cm (thus satisfying the second boundary 

condition). This implies that the solid has deposited at the bottom of the settler. For each numerical 

method, the increase of the number of discretization points implies a change of obtained profiles, 

demonstrating the effect of this parameter on the solution quality, as expected. Figure 4d presents 
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a comparison among the profiles obtained for each strategy. Although the profiles observed in 

this figure are not identical, a concordance between the results obtained by each approach can be 

observed. This demonstrates that, despite each approach having a different conceptual framework, 

the results obtained are consistent. Finally, it is important to mention that these results are 

consistent with those reported by Nocoń (2010) [39], using a numerical strategy based on the 

discretization of the model with flow control between the layers. 

Table 3 presents the processing time for the first sedimentation problem considering all 

numerical strategies. 
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(a) THINC. (b) WENO. 
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(c) HRCS. (d) THINC, WENO and HCRS (N=200). 

  

Figure 4: Solids concentration at final time considering the THINC, WENO and HRCS strategies (C=0.5) 

for the first sedimentation case. 

Table 3: Processing time (s) for the first sedimentation problem considering THINC, WENO and HRCS 

strategies (C=0.5). 

N ∆t THINC WENO HRCS 

50 2.55×10-3 1.57 1.69 1.40 

100 1.26×10-3 32.43 33.23 30.01 

200 6.28×10-4 109.47 105.93 92.33 

 

In this table, an increase in the number of discretization points results in a reduction of the 

time step (∆t) and an increase in the processing time required to solve the sedimentation problem. 

Additionally, a significant difference in processing time is observed in each processing time when 

the value of the parameter N is increased. Specifically, compared to THINC, both WENO and 

HRCS showed a reduction of approximately 3.3% and 15.7%, respectively, when N is equal to 

200. 
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Figure 5 presents the plane and space profiles considering the HRCS strategy for N and C 

equal to 200 and 0.5, respectively. In Figure 5a, it is possible to observe the evolution of the solids 

concentration along the settler for different time instances. In this case, as expected, the longer 

the time, the higher the solids concentration at the bottom of the settler, highlighting the efficiency 

of this unitary operation. Figure 5b presents the 3D plot of solids concentration as a function of 

time and length. In this figure, the discontinuity in the profile is evident due to the presence of the 

three regions: clear (εs=0), free settling (εs=4 g/L), and compression (4 g/L ≤ εs ≤ 45 g/L). In the 

first region, all solid particles have been displaced to the bottom of the settler due to the action of 

gravity. As a result, the concentration in this region is zero. In the second region, the concentration 

is equal to initial value (εs=4 g/L). Finally, in the third region, there is mass accumulation due to 

action of gravity. These three regions can also be observed in Figure 5c. The identification of the 

discontinuity, which is a function of length and time, represents the main numerical challenge in 

the sedimentation problem. As observed from the results obtained, all the methods considered 

were able to overcome this difficulty, resulting in physically consistent profiles. 
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(a) εs × z. (b) Concentration profile. 
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(c) Contour plot. 
 

Figure 5: 2D, 3D, and contour plot profiles considering the HRCS strategy (N=200 and C=0.5). for the 

first sedimentation case. 

5.3 Bath Sedimentation (Diehl, 2015)  

The last case considers the bath sedimentation process proposed by Diehl (2015) [20]. The 

physical modeling is based on the following hypotheses: (i) transient one-dimensional model; (ii) 

the velocity of solid particles is a function of the local suspended solids concentration; (iii) only 

the vertical movement of particles is considered; (iv) the horizontal gradients in suspended solids 
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concentration are negligible; and (v) the movement of solid particles results only from 

gravitational settling. Mathematically, the model representing this process is given by Diehl 

(2015) [20]: 
 

 ( )
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s t
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As mentioned in the earlier model, Eq. (46) describes the initial distribution of suspended 

solids. The first boundary condition (Eq. (47)) indicates that for t less than 0.01, the solids 

concentration at z equal to zero is equal to the initial concentration (εs0=4 kg/m3), otherwise it is 

equal to zero. The second boundary condition (Eq. (48)), the mass flux is equal to zero.  

Figure 6 presents the velocity of solid particles and the solids flux density function (vs×εs) 

profiles considering Eq. (45). As highlighted earlier, both the profiles are consistent, i.e., the 

velocity exhibits a decay behavior with respect to solids concentration, and the solids flux density 

takes zero values both at εs equals to 0 and 20 kg/m3, respectively [4]. 
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(a) Velocity profile. (b) Solids Flux Density (vs×εs). 
 

 

Figure 6: Velocity of solids particles and solids flux density function profiles for the second sedimentation 

case. 

Figure 7a presents the solids concentration profiles at final time considering the THINC, 

WENO and HRCS strategies and N and C equals to 200 and 0.5, respectively. In this figure, no 

significant changes are observed among the profiles estimated by each of the approaches 

considered. Physically, the results are consistent with the expected behavior at the end of the 

process; i.e., throughout most of the settler, the concentration is zero, while at the bottom, the 

concentration tends to its maximum value.  

Figure 7b presents the temporal evolution of concentration along the settler at different time 

steps. These profiles demonstrate that the process simulation aligns with the expected physical 

behavior, as the concentration at the bottom of the settler increases over time, while the 

concentration at the top decreases proportionally. 

Figure 7c presents the 3D plot of solids concentration. In this figure, due to the presence of the 

three regions: clear (εs=0), free settling (εs=4 kg/m3) and compression (4 kg/m3 ≤ εs ≤ 

εsm=17 kg/m3), a discontinuity in the profile can be observed. As mentioned earlier, the first region 

is characterized by absence of solid particles due to the action of gravity (εs=0). In the second 
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region, the concentration is equal to the initial value (εs=4 kg/m3). In the third region, there is 

mass accumulation due to action of gravity. These regions can also be observed in Figure 7d. It 

is important to mention that these results are consistent with those reported by Diehl (2015) [20] 

using a Godunov’s method. 

Regarding processing time, when the parameter N is increased (∆t is reduced), the processing 

time also increases, as shown in Tab. 4. For N equal to 200, a reduction of approximately 17.5% 

and 26.3% for both WENO and HRCS compared to THINC is observed. 
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(c) Concentration profile. (d) Contour plot. 
 

 

Figure 7: 2D, 3D and contour plot considering the HRCS strategy (N=200 and C=0.5) for the second 

sedimentation case. 

Table 4: Processing time (s) for the second sedimentation problem considering THINC, WENO and 

HRCS strategies (C=0.5). 

N ∆t THINC WENO HRCS 

50 2.55×10-3 0.53 0.68 0.44 

100 1.26×10-3 2.07 2.73 1.89 

200 6.28×10-4 8.89 7.33 6.56 

5. CONCLUSIONS 

In this work, three numerical approaches—Tangent of Hyperbola Interface Capturing 

(THINC), Weighted Essentially Non-Oscillatory (WENO), and High-Resolution Central Scheme 

(HRCS)—were employed to solve a classical chemical engineering problem exhibiting 

discontinuities: the simulation of the particle sedimentation process. The results demonstrated that 

all three numerical strategies were capable of providing accurate estimates of the solid 
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concentration profiles. Moreover, the results were physically consistent with those reported in the 

literature. As expected, increasing the number of discretization points led to a higher processing 

time required to solve the problem. The parameter C required by the Courant–Friedrichs–Lewy 

condition should be chosen by the user. However, it can be easily defined based on preliminary 

simulations. Finally, in terms of computational efficiency, the best results were obtained using 

the HRCS approach. Processing time evaluation is crucial for parameter estimation and 

engineering system design.  

It is important to emphasize that the velocity functions considered in engineering applications 

were proposed in the literature to characterize a specific type of sedimentation. In this context, 

for the analysis of a new case study, it is necessary to know the velocity function or solve the 

model described by the momentum balance. 

Future work suggestions include: (i) solving the sedimentation problem by considering the 

momentum equation; (ii) extending each numerical approach to solve multidimensional 

problems; (iii) estimating solid flow densities using real experimental data; (iv) investigating the 

Boycott phenomenon in inclined settlers; (v) evaluating the effect of temperature on particle 

sedimentation; and (vi) exploring the type of batch test (Kynch or Diehl). 
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