

# Foliar application of plant growth regulators increases the production of biomass, content, yield and chemical constituents of *Origanum vulgare* L. essential oil

Aplicação foliar de reguladores de crescimento de plantas aumenta a produção de biomassa, conteúdo, rendimento e constituintes químicos do óleo essencial de *Origanum vulgare* L.

R. M. A. de Assis<sup>1</sup>; A. da C. Honorato<sup>2</sup>; J. P. dos Santos<sup>2</sup>; L. I. F. de Andrade<sup>3</sup>; J. J. F. Leite<sup>1</sup>; T. F. Miranda<sup>1</sup>; S. K. V. Bertolucci<sup>2</sup>; J. E. B. P. Pinto<sup>1\*</sup>

*<sup>1</sup>Department of Agriculture, Laboratory of Plant Tissue Culture and Medicinal Plants, Federal University of Lavras, 37200-900, Lavras-Minas Gerais, Brazil*

*<sup>2</sup>Department of Agriculture, Laboratory of Phytochemistry and Medicinal Plants, Federal University of Lavras, 37200-900, Lavras-Minas Gerais, Brazil*

*3Department of Agriculture, Phytotechnics/Olericulture Sector, Federal University of Lavras, 37200-900, Lavras-Minas Gerais, Brazil*

> *[\\*jeduardo@ufla.br](mailto:jeduardo@ufla.br) (Recebido em 11 de março de 2024; aceito em 23 de julho de 2024)*

*Origanum vulgare* is used in the prevention of neurodegenerative diseases; for feeding poultry, fish, and cattle; and in the food industry. The objective of this study was to evaluate the influence of foliar application of plant growth regulators (PGRs) on biomass, secondary metabolites and antioxidant enzymatic activity. The experiment had a double-factorial design with a control, 3 types of regulators and 3 doses. After 90 days, the dry weight, essential oil content and photosynthetic pigments were measured. The effects of PGRs on the antioxidative system and the activities of several antioxidant enzymes, suchas superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), were investigated. With the use of PGRs, the increase in branch length was greater than that in the control. Compared with the control, the application of 25 mg/L GA3 increased the leaf, stem, root, shoot and total dry weights. The highest chlorophyll a content was observed with the KIN25 dose. The oil content gains from the KIN25 and IBA25 doses were 30.9 and 29.6%, respectively, compared to the control. The highest thymol content was observed in the plants that received the GA350 dose (24.80%), which was 12.14% greater than that in the control. The lowest mean hydrogen peroxide  $(H_2O_2)$  and malondialdehyde (MDA) levels were observed in the presence of thePGRs. The PGRs stimulated enzymatic antioxidant activity, decreasing oxidative stress signaling. These findings suggest that foliar application of PGRs at low doses may contribute to increased biomass and active ingredient levels.

Keywords: medicinal plants, secondary metabolite, phytoregulator.

*Origanum vulgare* é utilizado na prevenção de doenças neurodegenerativas; para alimentação de aves, peixes e bovinos; e na indústria alimentícia. O objetivo deste estudo foi avaliar a influência da aplicação foliar de reguladores vegetais (RV) na biomassa, metabólitos secundários e atividade enzimática antioxidante. O experimento foi conduzido em um delineamento fatorial duplo com um controle, 3 RV e 3 doses. Após 90 dias, foram mensurados o peso seco, conteúdo de óleo essencial e pigmentos fotossintéticos. Os efeitos dos RV no sistema antioxidante e em algumas atividades enzimáticas antioxidantes, como superóxido dismutase, catalase e ascorbato peroxidase, foram investigados. O uso de RV aumentou o ganho no comprimento dos ramos em relação ao controle. A aplicação de GA3 na dose de25 mg L<sup>-1</sup> aumentou o peso seco da folha, caule, raiz, broto e peso seco total em comparação com o controle.O maior teor de clorofila a foi observado para a dose KIN25. Os ganhos de teor de óleo das doses KIN25e IBA25 foram de 30,9% e 29,6%, respectivamente, em comparação com o controle. O maior teor de timolfoi observado em plantas que receberam a dose GA350 (24,80%), o que foi 12,14% maior em comparaçãocom o controle. As menores médias de peróxido de hidrogênio e malondialdeído (MDA) foram observados na presença dos RV. Os RV estimularam a atividade antioxidante enzimática, diminuindo o sinal de estresse oxidativo. Esses achados sugerem que a aplicação foliar de RV em doses baixas pode contribuir para aumentar a biomassa e os ingredientes ativos.

Palavras-chave: plantas medicinais, metabólito secundário, fitorregulador.

## **1. INTRODUCTION**

Commonly known as oregano, *Origanum vulgare* L. (Lamiaceae) originated and is widely distributed in the Mediterranean, Euro-Siberian and Iranian-Turanian regions [\[1\]](#page-16-0). This species has nutritional importance and is a widely appreciated natural condiment. At the industrial level, it is used in perfumery and personal hygiene, whereas in medicine, it is used in the preparation of anesthetics, sedatives, antispasmodics, antirheumatics and expectorants [\[2\]](#page-16-1).

The global production of oregano generates an approximate revenue of US \$22.5 million [\[3\]](#page-16-2). Oregano essential oil has great value because it has antimicrobial, antiradical, and acaricidal activities and plays a role in the prevention of phytopathogen infection [\[4-6\]](#page-17-0). In addition, oregano can beused as an antidiabetic and food supplement [\[7\]](#page-17-1); in the prevention of neurodegenerative diseases [\[8\]](#page-17-2); in the feed of poultry, fish, and cattle [\[9\]](#page-17-3); and in the food industry [\[10\]](#page-17-4).

The characteristics of oregano are not the same year-round. The plant undergoes changes, and therefore, the concentration of active ingredients may vary seasonally. Among the various abiotic and biotic factors, such as fertilization [\[11\]](#page-17-5), drying [\[12\]](#page-17-6), irrigation [\[13\]](#page-17-7), ontogeny [\[14\]](#page-17-8) and genetics [\[15\]](#page-17-9), that affect the production of essential oils, the use of growth regulators has been highlighted in recent years as a widely applicable tool for improving the productionof secondary metabolites in medicinal plants [\[16\]](#page-17-10).

Plant growth regulators (PGRs), also known as plant hormones, are natural or synthetic products that affect development and metabolic processes in plants [\[17,](#page-17-11) [18\]](#page-17-12). Sharafzadeh and Zare (2011) [\[19\]](#page-17-13) reported that the use of growth regulators can influence the production of essential oils through effects on plant growth (biomass of leaves or flowers), essential oil biosynthetic pathways and the number of oil storage structures. In addition, the timing of exogenous application and the type of growth regulator applied can also affect the essential oil content. According to the same authors, among the main growth regulators used to influence the production of secondary metabolites in species of the Lamiaceae family, auxins, cytokinins and gibberellins stand out.

Studies have shown that the application of indole-3-butyric acid (IBA) and gibberellic acid (GA3) improved the phytochemical characteristics of the species *Thymus vulgare* L. [\[20\]](#page-17-14). The use of IBA improved vegetative growth, the yield of chalices and the phytochemical parameters of *Hibiscus sabdariffa* L. [\[21\]](#page-17-15). Hasan-Beigi et al. (2021) [\[22\]](#page-18-0) reported that the foliar action of gibberellic acid (GA3) along with salicylic acid increased the dry biomass and essential oil content in *Echinacea purpúrea* (L.) Moench. Khan et al. (2022) [\[23\]](#page-18-1) reported that foliar application of kinetin (KIN) provided a relatively high yield of essential oil and active constituents in the species *Mentha arvensis* L.

In this context, the objective of this study was to observe the influence of foliar applicationof plant growth regulators on the production of biomass and secondary metabolites and antioxidant enzymatic activity in *O. vulgare* L.

# **2. MATERIAL AND METHODS**

#### **2.1 Study area and seedling production**

The experiment was carried out in the greenhouse of the Tissue Culture Laboratory of the Department of Agriculture (DAG) of the Federal University of Lavras, Brazil, located at 21° 14'S and 45° 00'W at an altitude of 918 m. The specimen material of the species has already been deposited in the ESAL Herbarium of the Department of Biology at UFLA (nº 22.156).

Seedlings were obtained via vegetative propagation of apical cuttings of parent plants(5–7 cm). The cuttings were rooted in 128-cell Styrofoam trays with the commercial substrate Basaplant<sup>®</sup>. After the cuttings had rooted (30 days), the plants were transplanted to pots (10 L) containing a mixture of dystrophic red Latosol and sand (2:1) and 300 g of cattle manure per pot. The chemical characteristics of the substrate (2:1 soil + 300 g of cattle manure) were as follows: pH in water = 5.4; K, Na (mg dm<sup>-3</sup>) = 217.25, 72; P-Rem (mg L<sup>-1</sup>) = 17; Ca<sup>2+</sup>, Mg<sup>2+</sup>, Al<sup>3+</sup>, H+Al (cmolc dm<sup>-3</sup>) =

2.53, 0.72, 0.10, 1.30; base saturation index (V%) = 74.5; organic matter (dag kg<sup>-1</sup>) = 2.28; Zn, Fe, Mn,Cu, B and S (mg dm<sup>-3</sup>) = 2, 34, 13.50, 1.47, 0.22, 11.20.

#### **2.2 Experimental design**

The experimental design was completely randomized in a double factorial scheme (3 types of regulators  $\times$  3 doses  $+1$  control) and four replicates; each replicate contained four plants, totaling 160 experimental units distributed in 10 treatments, as shown in Table 1.

| No.        | <b>Treatment description</b>                  | Abbreviationused |
|------------|-----------------------------------------------|------------------|
| T1         | Gibberellic acid 25 mg $L^{-1}$               | GA325            |
| T2         | Gibberellic acid 50 mg $L^{-1}$               | GA350            |
| T3         | Gibberellic acid 100 mg $L^{-1}$              | GA3100           |
| <b>T4</b>  | Indole-3-butyric acid 25 mg $L^{-1}$          | IBA25            |
| T5         | Indole-3-butyric acid 50 mg $L^{-1}$          | IBA50            |
| T6         | Indole-3-butyric acid 100 mg $L^{-1}$         | <b>IBA100</b>    |
| <b>T7</b>  | Kinetin 25 mg $L^{-1}$                        | KIN25            |
| T8         | Kinetin 50 mg $L^{-1}$                        | <b>KIN50</b>     |
| T9         | Kinetin 100 mg $L^{-1}$                       | <b>KIN100</b>    |
| <b>T10</b> | Control - H <sub>2</sub> O + Tween 80 (0.05%) | Control          |

*Table 1: Description and abbreviations of each treatment used in the experiments. GA<sup>3</sup> (gibberellic acid); IBA (indole-3-butyric acid); KIN (kinetin).*

On the day of application, 500 mL of stock solution was prepared for each PGR (GA3, IBA and KIN); from this solution, dilutions (25, 50 and 100 mg  $L^{-1}$ ) were prepared. After each dilution was prepared, Tween 20 (0.05%) was added to the solutions for all the treatments and the control, and 200 mL of the final solution was sprayed on the plants to the point of dripping.

Three applications were performed. The first and second applications were performed 30 and 60 days after transplanting, respectively. The third application occurred 72 hours before harvest (87 days after transplanting) during the 90-day cycle of cultivation of the species. Plant irrigation was performed two to three times a week, maintaining the field capacity between 80% and 90%. The temperature and humidity (Figure 1) were measured with a Datalogger Elitech® during the 90 days of oregano cultivation.



*Figure 1: Daily averages of temperature and humidity during the 90 days of oregano cultivation in a greenhouse using a Datalogger Elitech®.*

#### **2.3 Growth analysis**

At 90 days after transplanting, the length of the longest branch was measured via a tape measure, and the results are expressed in cm. To obtain dry matter, the leaves, stems and roots were placed on Kraft paper and kept in a forced-air oven at 40°C until a constant weight was reached. Each part of the plant was subsequently weighed on an analytical balance, and the result was expressed in grams (g). The parameters evaluated were the leaf (LDW), stem (SDW), root  $(RDW)$ , shoot (ShDW) and total (TDW) dry weights and the root-shoot ratio  $(R/Sh)$ .

## **2.4 Photosynthetic pigments**

The photosynthetic content was extracted and analyzed via methods developed by Hiscox and Israelstam (1979) [\[24\]](#page-18-2) and Barnes et al.(1992) [\[25\]](#page-18-3). Fresh leaves of oregano (50mg)were weighed and incubated in 10 mL of dimethyl sulfoxide (DMSO) saturated with calcium carbonate (CaCO<sub>3</sub>) according tomethods described by Santos et al.(2015)[\[26\]](#page-18-4).The samples were subsequently placed in an oven at 65°C for 48 h.

The samples were prepared in quintuplicate, and three aliquots (3 mL) of each replicate were transferred to a quartz cuvette; the optical density values were read in a TECAN INFINITY M200 PRO spectrophotometer at 480, 649 and 665 nm. The spectrophotometer was operated in the I - Control® data processing system (version 3.37) against a blank sample containing DMSO. The specific optical density value recorded for each sample was calculated on the basis of the average of the readings for the aliquots.

The wavelengths and equations adopted for these calculations were based on the methodology of Wellburn (1994) [\[27\]](#page-18-5):

Chlorophyll *a* 649 = (12.47 × A665) - (3.62 × A649); chlorophyll *b* 665 = (25.06 × A649) -  $(6.5 \times A665)$ ; carotenoids  $480 = (1000 \times A480 - 1.29 \times Ca - 53.78 \times Cb)/220$ . Total chlorophyll *=* chlorophyl*l a +* chlorophyll *b*

## **2.5 Extraction of essential oil**

The essential oil was extracted via the hydrodistillation technique in a modified Clevenger apparatus. Forty grams of dry leaves was placed in a 2,000 mL volumetric flask that was then filled with 1,000 mL of distilled water. From the boiling point, the extraction time was fixed at 90 min. Fourextractions were performed for each treatment. The essential oil was weighed, stored in an airtight amber bottle and kept in a refrigerator at 4°C. The essential oil content was expressed in g  $100 \text{ g}^{-1}$  of leaf dry mass, and the yield was expressed in g plant<sup>-1</sup>.

## **2.6 Chemical analysis of essential oils**

Qualitative and quantitative analyses of the essential oil were performed according to De Assis et al. (2020) [\[28\]](#page-18-6). Briefly, measurements were performed in triplicate on an Agilent® 7890A gas chromatography (GC) system operated on an MSD CHEM Station Ver. E.02.02.1431 data processing system equipped with a CombiPAL autosampler/injector autosampler system (CTC Analytic AG, Switzerland) and flame ionization detector (FID). Qualitative analyses were performed on an Agilent® MSD 5975C selective mass detector (Agilent Technologies, California, USA) operated by electronic impact ionization at 70 eV in scan mode with a 1.0 s−1 scan speed and mass acquisition interval of 40–400 mz<sup>-1</sup>. Chemical constituents were identified by comparing their retention rates relative to the coinjection of a standard n-alkane solution (C8- C20; Sigma-Aldrich®, St. Louis, USA) via the Van Den Dool and Dec Kratz equation (1963) [\[29\]](#page-18-7). Oregano EO constituents were identified by comparison with mass spectra from the NIST/EPA/NHI library database [\[30\]](#page-18-8) and based on retention rates described in the literature [\[31\]](#page-18-9).

# **2.7 Extraction and quantification of hydrogen peroxide (H2O2) and malondialdehyde (MDA)**

The extraction of hydrogen peroxide  $(H_2O_2)$  and malondialdehyde (MDA) (a lipid peroxidation product) was performed according to Biemelt et al. (1998) [\[32\]](#page-18-10). A total of 0.2 g of fresh leaves was macerated in liquid  $N_2$  with polyvinylpyrrolidone (PVPP). The material was subsequently placed in an Eppendorf tube, homogenized in 1,500 μL of trichloroacetic acid (TCA) at 0.1% (w/v) and centrifuged at  $12,000 \times g$  for 15 minutes. The supernatant was separated to obtain the sample solution, which was stored at -20°C until quantitative analyses were performed in quadruplicate.

#### **2.7.1 Hydrogen peroxide (H2O2)**

The mixture was incubated according to Velikova et al.  $(2000)$  [\[33\]](#page-18-11). A total of 45  $\mu$ L of 10 mmol  $L^{-1}$  potassium phosphate buffer solution (pH 7.0) and 90  $\mu$ L of potassium iodide were added to each well of a microplate, along with 45 µL of the sample mixture. Readings were taken at 390 nm. The  $H_2O_2$  concentration of the samples was calculated on the basis of the linear equation for the curve obtained from the densities, and the results are expressed in mmol  $H_2O_2$  $g^{-1}$  FW.

#### *2.7.2 Malondialdehyde (MDA)*

The incubation was performed according to Buege and Aust (1978) [\[34\]](#page-18-12). A total of 250  $\mu$ L of solution with 0.5% thiobarbituric acid (TBA) and 10% trichloroacetic acid (TCA) was added to an Eppendorf tube together with  $125 \mu L$  of the sample solution. The solution was homogenized and placed in a water bath at 95°C for 30 min. After cooling, 200 µL was used for measurement, which was performed at 535 and 600 nm. The MDA contents were calculated using an extinction coefficient of  $1.56 \times 10^{-5}$ , and the results are expressed in nmol MDA  $g^{-1}$  FW.

## **2.8 Extraction of antioxidant enzymes and enzymatic activity**

The extracts used for the enzyme assays (SOD, CAT and APX) were prepared according to Biemelt et al. (1998) [\[32\]](#page-18-10). Fresh leaves  $(0.2 \text{ g})$  were macerated in liquid N<sub>2</sub> with polyvinylpyrrolidone (PVPP). The material was subsequently placed in Eppendorf tubes and homogenized with 1,500 μL of extraction buffer solution composed of 375 µL of 400 mM potassium phosphate (pH 7.8),15 µL of 10 mM EDTA, 75 µL of 200 mM ascorbic acid and 1,035 μL of distilled water. The reagent mixture was centrifuged for 10 min at 13,000  $\times$  g in an Nl 1801 benchtop microcentrifuge, and the supernatant (sample mixture) was collected and stored in Eppendorf tubes at -20°C until analysis was performed in quadruplicate.

## *2.8.1 Enzymatic activity of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX)*

Superoxide dismutase **(**SOD) activity is based on the ability of the enzyme to inhibit the photoreduction of nitrotetrazolium blue (NBT). Activity measurement was performed as described by Giannopolitis and Ries (1977) [\[35\]](#page-18-13). Briefly, the incubation buffer solution used consisted of  $100 \mu L$  of  $100 \text{ mM}$  potassium phosphate (pH 7.8),  $40 \mu L$  of 70 mM methionine, 3  $\mu L$ of 10  $\mu$ M EDTA, 15  $\mu$ L of 1 mM NBT, 2  $\mu$ L of 0.2 mM riboflavin and distilled water and was pipetted into a microplate along with  $10 \mu L$  of the sample mixture. The plate was then illuminated for 7 min and subsequently read at 560 nm. The results are expressed as U SOD activity  $\min^{-1}$   $g^{-1}$  FW.

Catalase (CAT) activity measurement was performed as described by Havir and Mchale (1987) [\[36\]](#page-18-14). Briefly, 90 µL of buffer solution containing 200 mM potassium phosphate (pH 7.0), previously incubatedin a water bath at  $30^{\circ}$ C, and  $72 \mu$ L of distilled water were pipetted into a microplate along with 9  $\mu$ L of the sample solution. Then, 9  $\mu$ L of hydrogen peroxide (250 mM) was added only at the time of reading, which was performed at 240 nm every 15 s for 3 min. The activity was calculated using an extinction coefficient of  $36 \,\mathrm{M}^{\text{-1}} \text{ cm}^{\text{-1}}$ .

Ascorbate peroxidase (APX) activity measurement was performed as described by Nakano and Asada (1981) [\[37\]](#page-18-15). Briefly, 90 µL of 200 mM potassium phosphate buffer solution (pH 7.0), 9 µL of 10 mM ascorbic acid and 63 µL of distilled water were added to the microplate along with 9 µL of the sample solution. Then, 9 µL of hydrogen peroxide (250 mM) was added only at the time of reading, which was performed at 290 nm every 15 s for 3 min. The activity was calculated using an extinction coefficient of  $2.8 \text{ M}$ <sup>-1</sup> cm<sup>-1</sup>.

#### **2.9 Statistical analysis**

The data were subjected to analysis of variance, and the means were compared via the Scott— Knott test ( $p \le 0.05$ ) with R software [\[38\]](#page-18-16). Principal component analysis (PCA) was performed via Statistica® software, version 10.0 (StatSoft - Tulsa, USA) [\[39\]](#page-18-17).

## **3. RESULTS AND DISCUSSION**

#### **3.1 Plant growth analysis**

Figure 2 shows the influence of the application of different doses of PGRs on the length of the largest branch of *O. vulgare* L. There was a significant interaction between the types of PGRs  $(GA<sub>3</sub>, IBA, KIN)$  and the doses (25, 50, 100 mg  $L^{-1}$ ) used in oregano cultivation. Gibberellin treatment resulted in longer branch lengths than treatment with the other regulators (IBA and KIN) and the control. The 100 mg  $L^{-1}$  GA<sub>3</sub> dose yielded a length of 107.9 cm, which significantly differed from the lengths observed with the highest doses of IBA (86.7 cm) and KIN (90.8 cm) and the control (82.8 cm) (Figure 2). Compared with the IBA100 and KIN100 doses and the control, the 100 mg  $L^{-1}$  GA<sub>3</sub> dose resulted in branch length gains of 19.6%, 15.8% and 23.3%, respectively.



*Figure 2: Influence of foliar application of plant growth regulators (PGRs) at different doses on the length of the largest branch of Origanum vulgare L. grown in a greenhouse. The means followed by the same lowercase letters between the PGR types with the same dose and capital letters for the dose factor within the PGRs do not differ from each other according to the Scott–Knott test (p < 0.05). The means followed by (\*) differ from those of the control treatment according to Dunnett's test (p < 0.05).* GA<sub>3</sub> *(gibberellic acid); IBA (indole-3-butyric acid); KIN (kinetin).*

The greater mean length of the oregano branches in the gibberellin treatment than in the control, IBA and KIN treatments can be explained by the effects of gibberellin on plant growth and development. One of the main roles of biologically active gibberellins is the promotion of cell elongation and the induction of internode elongation in plants [\[40\]](#page-18-18).

Dadkhah et al. (2016) [\[41\]](#page-18-19) reported similar results; these authors also reported that the growth of the species *Satureja hortensis* L. was greater following the exogenous application of GA<sup>3</sup> at the highest doses (100, 200 and 300 mg  $L^{-1}$ ). The results of this study are also in agreement with those from the study by Sajid et al. (2015) [\[42\]](#page-18-20), who reported that foliar application of PGRs (GA and BAP) promoted height increases with increasing doses  $(0, 25, 50, 100 \text{ mg } L^{-1})$  in the species *Gladiolus grandifloras* L. In addition, other studies have shown that, compared with a control, the exogenous application of PGRs affects plant growth [\[43,](#page-18-21) [44\]](#page-18-22).

Figure 3 shows the influence of foliar application of different doses of PGRs on the LDW, SDW, RDW, ShDW, TDW and R:Sh of oregano. There was a significant interaction for all observed dry weight variables (LDW, SDW, RDW, ShDW, TDW, and R:Sh). Compared with the control, foliar application of the PGRs GA3, IBA and KIN significantly increased the oregano dry weight. Compared with the control treatment (without the application of PGRs), the application of 25 mg/L GA<sup>3</sup> increased the LDW, SDW, RDW, ShDW and TDW by approximately 3.5%, 21.8%, 14.0%, 14.1% and 12.9%, respectively.

The lowest dry weight accumulation of oregano was observed at the highest dose of PGRs, especially with the application of GA3100 and KIN100, which resulted in relatively low LDW, SDW, ShDW and TDW values. In the case of GA<sub>3</sub>, importantly, the highest mean branch length (Figure 2), observed at the GA350 and GA3100 doses, did not reflect the LDW gain (Figure 3A) but rather significant increases in SDW (Figure 3B), with values of 26.8 and 25.0 g, respectively.

The RDW increased as the IBA and KIN doses increased, and the highest mean RDW  $(17.7 g)$ was observed following the IBA100 dose. For GA<sub>3</sub>, the opposite pattern was observed: at the highest dose (GA<sub>3</sub>100), a lower RDW (7.4 g) was observed.

R:Sh is an important variable for evaluating plant growth and development because it expresses the influence of root growth in relation to that of shoots and the influence of shoot growth relative to that of roots [\[45,](#page-18-23) [46\]](#page-19-0). All the treatments showed R:Sh values less than one (1.0), indicating greater dry weight production among the aerial plant parts at the expense of root production.



*Figure 3: Influence of foliar application of plant growth regulators (PGRs) at different doses on the dry weight of Origanum vulgare L. grown in a greenhouse. The means followed by the same lowercase letters between the PGR types with the same dose and capital letters for the dose factor within the PGRs do not differ from each other according to the Scott–Knott test (p < 0.05). The means followed by (\*) differ from those of the control treatment according to Dunnett's test (p < 0.05). GA3 (gibberellic acid); IBA (indole-3-butyric acid); KIN (kinetin).*

Studies have shown that foliar application of PGRs directly influences plant growth and development. GA3, for example, is responsible for controlling various aspects of plant growth and physiology, such as stem elongation, shoot growth, and the juvenile leaf stage for adults [\[43,](#page-18-21) [47\]](#page-19-1). Sajid et al. (2015) [\[42\]](#page-18-20) reported that the highest  $GA_3$  dose (25, 50 and 100 mg  $L^{-1}$ ) resulted in a greater weight of the species *G. grandifloras* L. Hasan and Ismail (2018) [\[48\]](#page-19-2) reported that spraying 150 mg  $L^{-1}$  GA<sub>3</sub> on peanut plants significantly increased the plant height, total dry weight

and number of twigs; these results are in contrast with those reported for oregano, for which higher weights were observed for the lowest dose  $(GA<sub>3</sub>25)$ , indicating that each species is influenced differently by the PGR dose. In the present study, oregano performed better with lower doses of PGRs (GA325, IBA50, and KIN25) than with the control.

Kulkarni et al. (2013) [\[49\]](#page-19-3) reported that the foliar application of IBA (5  $\mu$ M) on mustard increased the dry weights of the aerial parts and roots of the plant, corroborating the results of the present study; foliar application of IBA stimulated the growth of both the aerial parts and roots of oregano in relation to the control. In addition, Arora et al. (2020) [\[50\]](#page-19-4) reported that exogenous application of IBA increased the fresh and dry root weights, plant height, number of branches, shoot diameter and shoot fresh weight of the medicinal species *Punica granatum* L. relative to the control. These results confirm the role of auxin (IBA) in the process of cell growth and division as well as in plant rooting [\[40,](#page-18-18) [51\]](#page-19-5).

With respect to KIN, which is related to the activity of the apical meristem and participates in breaking the dormancy of buds and shoots [\[43,](#page-18-21) [52\]](#page-19-6), studies have shown that spraying KIN  $(0.5, 1.0)$ or 5 µM) increases shoot length and the fresh and dry biomasses of soybean plants [\[53\]](#page-19-7). El et al. (2018) [\[54\]](#page-19-8) reported that the exogenous application of kinetin (75 mg  $L^{-1}$ ) increased the fresh and dry weights of *Dendranthema grandiflorum* (Ramat.) Kitam.

# **3.2 Analysis of photosynthetic pigments**

The influence of different doses of PGRs on the photosynthetic pigments of *O. vulgare* is shown in Figure 4. There was a significant interaction for all the observed variables (chlorophyll *a*, chlorophyll *b*, total chlorophyll, and carotenoids). For the PGRs GA<sub>3</sub> and KIN, there were differences among the doses, with the highest averages observed for KIN25 (0.69 mg  $g^{-1}$  FW) and for  $GA_350$  and  $GA_3100$  (both 0.68 mg g<sup>-1</sup> FW) (Figure 4A). However, there were no significant differences in chlorophyll *a* content among the IBA doses, and the values ranged from 0.63 to 0.66 mg g<sup>-1</sup> FW. In the control, the mean chlorophyll *a* content (0.50 mg g<sup>-1</sup> FW) was significantly lower than that in the PGR treatments. In the case of the KIN25 dose  $(0.69 \text{ mg g}^{-1} \text{ FW})$ , the production of chlorophyll *a* was 27.54% greater than that in the control. Notably, the higher mean amount of chlorophyll *a* present at the KIN25 dose  $(0.69 \text{ mg g}^{-1} \text{ FW})$  may have contributed to the increases in the LDW, SDW, ShDW and TDW, as shown in Figure 3.



*Figure 4: Effects of foliar application of plant growth regulators (PGRs) at different doses on the photosynthetic pigment contents and essential oil yield of Origanum vulgare L. grown in a greenhouse. The means followed by the same lowercase letters between the PGR types with the same dose and capital letters for the dose factor within the PGRs do not differ from each other according to the Scott–Knott test (p < 0.05).The means followed by (\*) differ from those of the control treatment according to Dunnett's test (p < 0.05). GA3 (gibberellic acid); IBA (indole-3-butyric acid); KIN (kinetin).*

Compared with the control, the application of PGRs led to increased production of carotenoids at all doses (Figure 4D). The highest average was recorded at the IBA50 dose, with a value of  $0.23$  mgg<sup>-1</sup> FW, which was 34.8% greater than that in the control  $(0.15 \text{ mg g}^{-1}$  FW). There was no significant difference among the IBA doses, with values ranging from 0.21 to 0.23 mg  $g^{-1}$  FW.

According to Cheng and Liu (2010) [\[55\]](#page-19-9), among the photosynthetic pigments, chlorophyll is one of the most important because it is related to the absorption, transmission and transformation of light energy in the photosynthetic process. With respect to the higher chlorophyll content provided by the application of PGRs, similar results were found for GA3, which afforded an

increase in chlorophyll content with increasing dose. The higher chlorophyll content at higher doses may be due to the inhibition of pigment degradation mediated by GA3 [\[56\]](#page-19-10). Saleem et al. (2020) [\[57\]](#page-19-11) reported the same behavior in *Corchorus capsularis* L. under copper stress, applied at doses of 10, 50 and 100 mg L-1 . However, the highest levels of chlorophyll in *C. capsularis*  resulted in a relatively high dry weight per plant, unlike in oregano, in which a decrease in dry weight per plant was observed as the GA3dose increased. This result shows that high doses of

GA<sub>3</sub> can have different effects depending on the species. In the case of the lowest dose  $(25 \text{ mg L}^{-1})$  of the PGRs IBA and KIN, for which higher pigment levels and, consequently, higher dry weights were observed (Figure 3), studies showed that both PGRs stimulated the production of chlorophyll. Mansouri and Talebizadeh (2017) [\[58\]](#page-19-12) reported similar results, wherein low concentrations of IBA  $(0.002, 0.020$  and  $0.203$  mg L<sup>-1</sup>) had a stimulatory effect on chlorophyll *a* and the accumulation of carotenoids in the species *Nostoc linckia*. Bashri et al. (2021) [\[59\]](#page-19-13) reported that the lowest doses of KIN (2.15, 10.74 mg  $L^{-1}$ ) significantly improved the growth and photosynthetic activity of *Trigonella foenum-graecum* L.

The higher chlorophyll *a* content in the presence of PGRs can be explained by the fact that auxins (IBAs) promote pigment synthesis and/or delay its degradation [\[21\]](#page-17-15). Exogenous application of cytokinins (KIN) can increase the activity of the enzyme ribulose 1,5-diphosphate carboxylase (RuBisCO), promoting greater efficiency of carboxylation andphotosynthesis[\[60\]](#page-19-14). The lower levels of chlorophyll in the IBA100 treatment may have occurred because of the high concentration of auxin (IBA), which induces the synthesis of 1-aminocyclopropane-1-carboxylic acid, the key regulatory enzyme in ethylene biosynthesis, because at high levels, this enzyme may lead to the degradation of photosynthetic pigments [\[61\]](#page-19-15). The greater production of carotenoids in oregano treated with PGRs than in the control may have contributed to greater photosynthetic activity and consequently to dry weight gain, since carotenoids are a group of isoprenoid compounds with a wide range of structures and can act as accessory pigments in photosynthesis, increasing light uptake and conferring photoprotective properties to plants [\[62\]](#page-19-16). In addition, because it is one of the most appreciated condiments in the world, the high content of carotenoids in oregano may be of interest and add market value. Studies have shown that among plant pigments, carotenoids have bioactive properties and can be beneficial for human health [\[63\]](#page-19-17), with several therapeutic effects, such as anticancer, immunomodulatory, anti-inflammatory, antibacterial, antidiabetic and neuroprotective effects [\[64\]](#page-19-18). According to this last author, this pigment is also widely appreciated for its industrial applications and can be used as an additive for food, feed, supplements and natural dyes.

## **3.3 Essential oil content, yield and constituents**

Figure 4 shows the influence of foliar application of different doses of PGRs on the contentand yield of oregano essential oil. There was a significant interaction effect between the PGRs and the doses on both the content (Figure 4E) and yield (Figure 4F) of essential oil. The highest mean essential oil content occurred in the plants treated with the lowest doses of PGRs (KIN25: 1.65%; IBA25: 1.62%; and GA325: 1.23%). The KIN25 and IBA25 doses resulted in increases of 30.9 and 29.6%, respectively, relative to the mean essential oil content in the control (1.14%).

The highest doses of the PGRs  $(GA_3100, IBA100)$  and KIN100) resulted in the lowest average oregano essential oil content; these results demonstrated the greater sensitivity of the plants to the GA3100 dose, which resulted in the lowest essential oil content (1.03%). These results show that the oil content of the species *O. vulgare* L. can vary by both the type of PGR and the foliar dose applied.

The highest yields of oregano oil also occurred at the lowest doses, KIN25, IBA25 and GA<sub>3</sub>25, with values of 0.39, 0.37 and 0.32  $g$  EO plant<sup>-1</sup>, respectively, whereas the control yielded 0.27 g EO plant<sup>-1</sup>. The essential oil content in the control decreased by 30.8, 27 and 15.6% relative to that in plants that received the KIN25, IBA25 and  $GA<sub>3</sub>25$  doses, respectively. In addition to stimulating plant growth and development, growth regulators, or plant hormones, also influence the biosynthesis of terpenes in many aromatic plant species, affecting the content and quality of essential oils [\[65,](#page-19-19) [66\]](#page-19-20). This phenomenon was observed in the results of this study, as the KIN25,

IBA25 and GA325 doses resulted in higher contents and yields than did the control (without the application of PGRs).

Singh et al. (2016) [\[67\]](#page-19-21) reported that the application of auxins (IAA and NAA) and  $GA_3$ increased the essential oil content of *Matricaria chamomilla* at doses of 25, 50, and 100 mgL-1 . Mahmoudi et al. (2022) [\[68\]](#page-19-22) reported that, compared with the control, the application of  $GA_3$  $(43.3, 86.6, 129.9 \text{ mg L}^{-1})$  increased the essential oil content in *Ocimum basilicum*. When treated with  $GA_3$  (0.35, 3.46, 34.6 mg  $L^{-1}$ ), *Mentha arvensis* presented a greater oil yield than did the untreated plants, and the increase due to the 1 µM dose was 44.60% [\[69\]](#page-20-0). In this study, increased oil yield in oregano was observed in plants treated with  $GA<sub>3</sub>25$ , with contents 15.6% greater than those in the control.

Abbas and EL-Saeid (2012) [\[70\]](#page-20-1) reported that, for lemongrass, plants in the control group had a lower oil content than did plants that received IBA  $(25, 50, 100 \text{ mg L}^{-1})$ . However, with respect to the oil yield per lemongrass plant, the control stood out relative to the IBA treatments. This is different from the results presented in this study, which revealed that compared with the control, the IBA25 dose increased the oil yield by 27% in oregano.

Conversely, KIN application increased the oil content and yield in *Mentha arvensis* by 46.6% and 50.80%, respectively, compared to the control [\[23\]](#page-18-1), corroborating the data reported inthis study, since the KIN25 dose also increased the content (30.9%) and yield (30.8%) of oil in oregano compared with the control.

The chemical constituents of the essential oil of *O. vulgare* are shown in Table 2. The application of PGRs influenced the synthesis of chemical compounds present in the essential oil of oregano. The main major constituents found were o-cymene, γ-terpinene, trans-sabinene hydrate, terpinen-4-ol and thymol, accounting for more than 67.23% of the oil compounds. The highest averages of trans-sabinene hydrate were observed in the presence of PGRs, where the KIN100 (31.56%) and GA3100 (31.22%) doses increased the contents by approximately 25.2 and 24.4%, respectively, compared with those in the control, for which the lowest mean (23.61%) value was observed. The same pattern occurred for thymol, since the highest mean content was observed for the GA350 dose (24.80%), which was 12.14% higher than that for the control (21.79%). Higher levels of terpinen-4-ol and γ-terpinene were also detected in the presence of PGRs than in the control.

 $\frac{\% \text{ Area}}{\text{Commut}}$  IR Control  $\frac{\text{GA3 (mg L)}}{25}$ GA3 (mg  $\overline{L^{-1}}$ )  $J = IBA \text{ (mg } L^{-1}$  $\text{KIN (mg L}^{-1})$  $\frac{30 \text{ A}}{\text{Compound}}$  IR Control  $\frac{30 \text{ A}}{25}$   $\frac{30 \text{ A}}{50}$   $\frac{100}{100}$   $\frac{25}{25}$   $\frac{30 \text{ A}}{50}$   $\frac{100}{100}$   $\frac{25}{25}$   $\frac{50}{50}$   $\frac{100}{100}$   $\frac{8D\%}{5D\%}$ **Monoterpenes Hydrocarbons 52.4d 57.1a 49.2f 51.3e 52.2d 54.8c 56.08a 57.6a 56.8a 56.0b** 1.0 α-Thujene 925 0.33e 0.35d 0.08i 0.10h 0.17g 0.19f 0.45b 0.38c 0.48a 0.19f 2.7 α-Pinene\* 932 0.18 0.19 nd nd 0.07 0.09 0.25 0.20 0.27 0.08 1-octen-3-ol 972 2.04d 2.03d 0.63i 0.76h 1.32g 1.47e 2.60b 2.28c 2.68a 1.41f 1.8 β-Pinene\* 976 0.12 0.12 nd nd 0.07 0.08 0.15 0.13 0.15 0.07 Myrcene 990 1.50c 1.52c 0.67g 0.76f 1.13e 1.19d 1.76a 1.60b 1.74a 1.11e 1.5 α-Phellandrene 1005 0.27c 0.30c 0.24d 0.26d 0.30c 0.30c 0.39a 0.37a 0.33b 0.29c 9.5 α-Terpinene 1016 2.62c 2.48c 1.33f 1.43f 2.01d 1.71e 2.0d 2.79b 2.98a 2.05d 3.9 **o-Cymene 1023 4.52d 3.23f 6.25b 5.55c 6.20b 7.8a 3.69e 3.27f 3.20f 2.69g** 1.5 Sylvestrene 1027 1.76c 1.75c 1.18f 1.28e 1.60d 1.66d 2.10a 2.03a 1.95b 1.56d 3.5 1,8-Cineole 1030 0.20b 0.20b 0.18c 0.15d 0.22a 0.19c 0.22a 0.18c 0.20b 0.18c 2.3 (Z)-β-ocimene 1036 3.41c 3.61b 2.22h 2.44g 2.58f 2.69e 3.90a 3.56b 3.87a 3.11d 1.3 (E)-β-ocimene 1046 0.40f 0.45d 0.26j 0.29i 0.33g 0.31h 0.52a 0.46c 0.49b 0.41e 1.4 **γ- terpinene 1057 8.51c 9.65a 2.88g 3.52f 5.09e 3.49f 9.60a 9.33b 9.75a 7.65d** 1.6 verine a controller cont Terpinolene 1087 0.92a 0.81c 0.59d 0.60d 0.78c 0.64d 0.87b 0.93a 0.98a 0.80c 4.0 **Sabinene hydrate-trans 1101 23.61e 27.91c 29.69b 31.22a 27.58c 30.22b 26.09d 27.73c 25.53d 31.56a** 1.4 **Oxygenated** monoterpenes<br>Terpinen-4-ol **16.9b 13.9g 18.3a 15.7d 16.4c 15.8d 14.3f 13.7g 14.8e 14.5f** 1.0 **Terpinen-4-ol 1177 10.38b 7.42f 10.83a 8.17d 9.42c 8.29d 7.74e 7.11g 8.39d 7.27f** 1.2 α -Terpineol 1190 3.13c 2.95e 3.47a 3.16c 3.39b 3.356b 3.01d 2.94e 2.95e 3.04d 1.1 Thymol methyl ether 1234 0.61a 0.22g 0.31d 0.34d 0.26f 0.32d 0.31d 0.31d 0.49b 0.39c 3.3

Carvone\* 1237 nd nd nd nd nd nd 0.26 nd nd nd

Linalyl acetate\* 1253 nd nd 0.13 nd nd 0.13 nd nd nd nd

Elixene\* 1366 nd nd 0.11 0.10 nd 0.10 nd nd nd nd β-Bourbonene\* 1382 nd nd nd 0.07 nd nd nd nd nd nd

Number of compounds 30 30 30 30 30 30 31 31 30 30 30 30

Sesquiterpene hydrocarbons<br>Elixene\*

**Oxygenated sesquiterpene**

Total % of compounds

Carvacrol methyl ether 1243 1.08a 0.91e 1.08a 1.02c 1.0c 1.06b 0.93e 0.93e 0.96d 1.05b 1.5<br>
Linalyl acetate\* 1253 nd nd 0.13 nd nd 0.13 nd nd nd nd nd

Linalool acetate 1257 1.70h 2.40e 2.63d 3.07a 2.39e 2.77c 2.32f 2.42e 2.0g 2.71b 1.1 **Phenolic monoterpenes 22.1d 22.2d 25.3a 24.2b 24.5b 23.8c 21.7e 21.6e 20.7f 21.8e** 1.3 **Thymol 1295 21.79d 21.75d 24.80a 23.70b 23.94b 23.29c 21.28e 21.20e 20.36f 21.42e** 1.3 Carvacrol 1302 0.34e 0.46c 0.55a 0.51b 0.59a 0.50b 0.39d 0.44c 0.37d 0.35e 4.5

(E)-Cariophyllene 1417 2.04b 1.78d 1.93c 2.17a 1.54g 1.46i 1.45i 1.51h 1.58f 1.73e 1.0 α -Humulene 1450 0.21b 0.19c 0.20b 0.23a 0.17d 0.15e 0.15e 0.17d 0.17d 0.18c 3.7 Germacrene D 1479 2.30a 2.10b 1.31h 1.79e 1.26i 0.79j 1.53g 1.74f 1.92d 2.04c 1.4 Germacrene D 1479 2.30a 2.10b 1.31h 1.79e 1.26i 0.79j 1.53g 1.74f 1.92d 2.04c<br>Byciclogermacrene\* 1494 1.10 1.28 0.26 0.51 0.40 nd 0.92 1.13 1.13 1.36

δ-Cadinene **1522** 0.18a 0.15b 0.18a 0.18a 0.13c 0.13c 0.13c 0.13c 0.13c 0.13c 3.5

Spathulenol 1575 0.78e 0.52f 1.52a 1.45b 1.04d 1.30c 0.44g 0.42g 0.37h 0.44g 2.1 Caryophyllene oxide 1580 0.20d 0.13f 1.52a 1.45b 1.04d 1.30c 0.44g 0.42g 0.37h 0.44g 2.1<br>Caryophyllene oxide 1580 0.20d 0.13f 0.41a 0.36b 0.27c 0.42a 0.12f 0.13f 0.14f 0.18e 4.1<br>Total % of compounds 98.59 99.61 98.92 98.11

4.7a 4.2c 3.6f 4.4b 3.1i 2.5j 3.3h 3.5g 3.8e 4.1d 1.2

**0.97e 0.65f 1.93a 1.81b 1.30d 1.72c 0.57g 0.55g 0.51 0.62f** 2.3

Table 1: Effects of foliar application of plant growth regulators (PGRs) at different doses on the chemical constituents of the essential oil of Origanum vulgare L. grown in a *greenhouse.*

RI: retention index of the alkane series (C8–C20); the HP-5MS columns are presented in the order of elution. Means followed by the same letter within the same line belong to the same group according to the Scott–Knott test (p  $\leq 0.05$ ). GM (green manure): R (root): Sh (leaf + stem). \*Compound for which statistical analysis was not performed because it was not identified in all treatments, SD  $(n = 3)$ .

Five classes of constituents were observed: monoterpene hydrocarbons, oxygenated monoterpenes, phenolic monoterpenes, sesquiterpene hydrocarbons and oxygenated sesquiterpenes. The highest percentage of monoterpene hydrocarbons was observed at the KIN25 dose, at 57.6%. However, higher doses of gibberellin  $(GA<sub>3</sub>100$  and  $GA<sub>3</sub>50)$  caused a decrease in the production of monoterpene hydrocarbons, with values of 51.3 and 49.2%, respectively, which may be associated with the absence of the constituents  $α$ -pinene and β-pinene in both treatments. For the levels of oxygenated monoterpenes, phenolic monoterpenes and oxygenated sesquiterpenes, the highest means were observed at the GA<sub>3</sub>50 dose.

The variation in the chemical composition of oregano essential oil may be related to the foliar application of PGRs, which can affect the enzymatic pathways of terpenoid biosynthesis [\[71\]](#page-20-2). According to Assaf et al. (2022) [\[72\]](#page-20-3), at optimal concentrations, PGRs may favor the accumulation of secondary metabolites in species of the Lamiaceae family. Elsayed et al. (2021) [\[73\]](#page-20-4) reported that the application of  $GA_3(25 \text{ mg } L^{-1})$  to chamomile increased the concentration of the main component of the oil. El-Kinany et al. (2020) [\[21\]](#page-17-15) demonstrated that the application of IBA (100 mg L-1 ) improved the phytochemical parameters of *Hibiscus sabdariffa* L. Thakur and Kumar (2020) [\[74\]](#page-20-5) reported a relatively high β-myrcene content in *Rosa damascena* treated with KIN  $(35 \text{ mg } L^{-1})$ . These findings corroborate the data presented in this study because, in the case of oregano, greater production of major constituents (trans-sabinene hydrate, thymol, terpinen-4-ol and γ-terpinene) was observed in the presence of PGRs.

The decrease in the mean amounts of monoterpene hydrocarbons present under the  $GA<sub>3</sub>100$ (51.3%) and GA350 (49.2%) doses may have occurred because of the influence of gibberellin on the metabolic pathway of terpenoids. Mansouri et al. (2011) [\[75\]](#page-20-6) reported that  $GA_3$  caused a decrease in the activity of one of the key enzymes involved in the synthesis of terpenes (DXS: 1-deoxy-D-xylulose-5-phosphate synthase) compared with that in control plants. In addition, GA<sup>3</sup> treatment decreased the number and percentage of monoterpenes in treated plants (Mansouri et al. 2011). Hazzoumi et al. (2014) [\[76\]](#page-20-7) noted that the use of  $GA_3(70 \text{ mg } L^{-1})$  suppressed  $\beta$ -cedrene and azulene production in *Ocimum gratissimum* L. Like Ghassemi-Golezani et al. (2022) [\[77\]](#page-20-8), these authors reported that  $GA_3$  (0,346 g L<sup>-1</sup>) reduced the contents of most of the constituents in *Anethum graveolens* L. Similarly, the essential oil constituents α-pinene and β-pinene were not found in oregano treated with the  $GA<sub>3</sub>100$  and  $GA<sub>3</sub>50$  doses.

#### **3.4 Oxidative stress and enzymatic antioxidant activity**

Figure 5 shows the influence of foliar application of different doses of PGRs on the oxidative stress response of oregano. Significant interactions were observed for all the variables (H2O2,  $MDA, SOD, CAT$  and  $APX$ ). The highest mean hydrogen peroxide ( $H_2O_2$ ) content was observed for the GA3100 dose, with a value of 7.9 µmol  $H_2O_2g^{-1}$  FW (Figure 5A). However, the lowest mean amounts of H2O2 also occurred in the presence of PGRs, namely, at the GA325, GA350 and IBA100 doses, with values of 3.2, 3.3 and 3.4  $\mu$ mol H<sub>2</sub>O<sub>2</sub> g<sup>-1</sup> FW, respectively, differing significantly from the control, which had an average of 5.5 µmol H2O2  $g^{-1}$  FW.

In the absence of PGRs, an increase in lipid peroxidation, measured as the malondialdehyde (MDA) content, was observed. The control treatment had the highest MDA content of 6.2 nmol MDA  $g^{-1}$  FW, which was significantly greater than that of the oregano plants treated with PGRs. The MDAproduction in the control was 95.8% and 95.3% greater than that in the IBA50 (2.6 nmol MDA  $g^{-1}$  FW) and KIN100 (2.9 nmol MDA  $g^{-1}$  FW) treatments, respectively (Figure 5B).

With respect to the activity of antioxidant enzymes, the presence of PGRs generally stimulates the antioxidant defense system of oregano. For SOD, the highest activity occurred in the control, with a value of 131 U SOD min<sup>-1</sup>  $g^{-1}$  FW, but this value did not differ statistically from the SOD values observed for the IBA25 and KIN25 doses, which also presented high activity,with values of 128 and 125 U SOD min<sup>-1</sup> g<sup>-1</sup> FW, respectively (Figure 5C). Conversely, for CAT, greater activity was observed at the KIN100, GA350 and GA325 doses, with values of 179, 119 and 116 mmol H<sub>2</sub>O<sub>2</sub> min<sup>-1</sup> g<sup>-1</sup> FW, respectively; these values were significantly greater than those observed in the control (79 mmol  $H_2O_2$  min<sup>-1</sup>  $g^{-1}$  FW) (Figure 5D).



*Figure 5: Influence of foliar application of plant growth regulators (PGRs) at different doses on the oxidative stress response of Origanum vulgare L. grown in a greenhouse. The means followed by the same lowercase letters between the PGR types with the same dose and capital letters for the dose factor withinthe PGRs do not differ from each other according to the Scott–Knott test (p < 0.05). The means followed by (\*) differ from those of the control treatment according to Dunnett's test (p < 0.05). GA3 (gibberellic acid); IBA (indole-3-butyric acid); KIN (kinetin)*

For the antioxidant enzyme APX, the highest activity was observed at the KIN25 and IBA50 doses, with values of 6.9 and 5.1 mmol ASA min<sup>-1</sup>  $g^{-1}$  FW, respectively, and the activity levels were 37.7 and 15.7% higher than that in the control (4.3 mmol ASA min<sup>-1</sup>  $g^{-1}$  FW) (Figure 5E).

The finding that the SOD activity level was greater than the CAT and APX activity levels can be explained by the fact that the SOD enzyme is the first to act in the detoxification process, i.e., the first barrier against oxidative damage; the main function of SOD is the conversion or dismutation of toxic radicals (superoxide,  $O_2 \cdot \cdot$ ) in H<sub>2</sub>O<sub>2</sub> and molecular oxygen (O<sub>2</sub>). The enzymes CAT and APX act in the dismutation of  $H_2O_2$  in water and oxygen, minimizing oxidative stress [\[78,](#page-20-9) [79\]](#page-20-10).

The foliar application of the different doses of PGRs stimulated the activation of the enzymatic antioxidant system; this occurred because there was a lower level of oxidative stress in the oreganoplants treated with PGRs, which presented lower MDA contents than did the control plants. Studies haveshown that PGRs play an important role in the adaptation and minimization of oxidative stress inplants by activating the enzymatic antioxidant system [\[80\]](#page-20-11). Jan et al. (2021) [\[81\]](#page-20-12) reported that foliar application of GA<sub>3</sub> and auxin (indole acetic acid-IAA) combined with EDTA significantly increased antioxidant activities (CAT and SOD) and reduced MDA levels. Ahanger et al. (2018)

[\[82\]](#page-20-13) and Kaya et al. (2018) [\[83\]](#page-20-14) also demonstrated that foliar application of KIN activated the antioxidant defense system and reduced oxidative stress in *Zea mays* L.

Although the control had high antioxidant activity (SOD), there were still relatively high levels ofH2O<sup>2</sup> and MDA. The higher enzymatic antioxidant activity of SOD in the control may have occurred in an attempt to mitigate cellular oxidative stress due to the high levels of  $H_2O_2$  and MDA, as studies have shown that high levels of  $H_2O_2$  and MDA are among the main responses to stress conditions. To stabilize this process, it is necessary to activate the enzymatic antioxidant system [\[78\]](#page-20-9).

Another important point is the high levels of carotenoids present in plants treated with PGRs (Figure 4D), which may have contributed to a lower level of oxidative stress; these results indicate that, among the various functions of carotenoids in plants, carotenoids can eliminate free radicals and protect against lipid peroxidation of the membrane [\[84-87\]](#page-20-15). The lower carotenoid content in the control (Figure 4D) may have increased the likelihood of stress and consequently oxidative damage.

These results indicate that the application of PGRs may have minimized the production of reactive oxygen species (ROS) and consequently decreased the effects of stress conditions, such as temperature and humidity variation, during the growth and development cycle of oregano (Figure 1).

#### **3.5 Principal component analysis**

Principal component analysis (PCA) was used to evaluate the effects of the interactions between growth regulator application and the evaluated parameters so that more information could be extracted from the results (Figure 6). PCA was performed for a correlation matrix includingthe variables dry weight, essential oil content and essential oil yield, and the two major components of the essential oil explained 74.38% of the total variation.

The graph of scores in Figure 3 shows the separation of the PCA results into three groups: the first group includes GA50 and GA100; the second group includes Kin50 and IBA100; and the third group includes IBA25, IBA50, Kin25 and GA25. On the basis of these separations, each treatment wasin a different quadrant of the graph, indicating that there was a difference between the treatments.The GA50 and GA100 treatments (Group 1) positively influenced the contents of the two major compounds thymol and trans-sabinene hydrate and the SDW. There was a positive correlation between the two major compounds of the essential oil and SDW. In addition, the analysis of the vectors revealed that the two major compounds of the essential oil and SDW were negatively correlated with the vegetative growth variables of the plant (LDW, TDW and ShDW), corroborating the hypothesis of environmental stress caused by the application of growth regulators at the GA50 and GA100 doses.



*Figure 6: Principal component analysis (PCA) of the constructed matrix correlation using data for leaf (LDW), stem (SDW), shoot (ShDW), root (RDW), total (TDW) dry weight; essential oil content; essential oil yield; and thymol and trans-sabinene hydrate levels at different doses of GA3 (gibberellic acid), IBA (indole-3-butyric acid), and KIN (kinetin).*

Positive correlations were observed between the KIN50 and IBA100 treatments and between the content and yield of essential oil and RDW (Figure 3). With the application of lower doses of KIN, IBA and GA, the weight gain (LDW, TDW and ShDW) increased. These treatments were negatively correlated with the contents of thymol and trans-sabinene hydrate.

This analysis provides additional important information about the results. PCA revealed that there was a difference between the types and doses of PGRs and between the development ofplants and the volatile compounds of *O. vulgare*.

## **4. CONCLUSION**

Foliar application of PGRs at the lowest doses (GA325, IBA25 and KIN25) resulted in greater dry weights in *O. vulgare*, contributing to significant gains in essential oil content and yield. The use of PGRs also increased the concentrations of carotenoids and major constituents of the essential oil, especially trans-sabinene hydrate and thymol. In addition, the presence of PGRs decreased oxidative stress signaling in this species, which may have contributed to thebetter performance of oregano. Therefore, the results of this study suggest that foliar application of PGRs at low doses may contribute to increased production of biomass and active ingredients in oregano.

## **5. ACKNOWLEDGMENTS**

The authors would like to thank the Universidade Federal de Lavras (UFLA) for all its support in terms of structure and resources, as well as the following funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -Brasil (CAPES – Finance Code 001).

# **6. BIBLIOGRAPHIC REFERENCES**

- <span id="page-16-0"></span>1. Lukas B, Schmiderer C, Novak J. Essential oil diversity of European *Origanum vulgare* L. (Lamiaceae). Phytochem. 2015;119:32-40. doi: 10.1016/j.phytochem.2015.09.008
- <span id="page-16-2"></span><span id="page-16-1"></span>2. Tintaya FC, Hurtado HH. Economic analysis of the production of oregano (*Origanum vulgare* L) in the fstablishments of la yarada in the district of tacna. Cienc Desarro. 2019;(17):61-6. doi: 10.33326/26176033.2014.17.408
- 3. Henry L-C, Salgado-Moreno S, Ávila-Ramos F, Gutiérrez-Leyva R, Domínguez-Rebolledo A, Ayala-Martínez M, et al. Review of the use of oregano spp. oil in animal health and production. Abanico Agrof. 2020;2:1-22. doi: 10.37114/abaagrof/2020.1
- <span id="page-17-0"></span>4. Gonçalves DC, Tebaldi de Queiroz V, Costa AV, Lima WP, Belan LL, Moraes WB, et al. Reduction of Fusarium wilt symptoms in tomato seedlings following seed treatment with *Origanum vulgare* L. essential oil and carvacrol. Crop Prot. 2021;141:105487. doi: 10.1016/j.cropro.2020.105487
- 5. Kačániová M, Vukovič N, Hleba L, Bobková A, Pavelková A, Rovná K, et al. Antimicrobial and antiradicals activity of *Origanum vulgare* L. and *Thymus vulgaris* essential oils. J Microbiol Biotechnol Food Sci. 2012;2(1):263-71.
- 6. Qiao Y, Yu Z, Bai L, Li H, Zhang S, Liu J, et al. Chemical composition of essential oils from *Thymus mongolicus*, *Cinnamomum verum*, and *Origanum vulgare* and their acaricidal effects on *Haemaphysalis longicornis* (Acari: Ixodidae). Ecotoxicol Environ Saf. 2021;224:112672. doi: 10.1016/j.ecoenv.2021.112672
- <span id="page-17-1"></span>7. Yu H, Zhang P, Liu H, Sun X, Liang J, Sun L, et al. Hypoglycemic activity of *Origanum vulgare* L. and its main chemical constituents identified with HPLC-ESI-QTOF-MS. Food Funct. 2021;12(6):2580-90. doi: 10.1039/d0fo03166f
- <span id="page-17-2"></span>8. Ligaj M, Kobus-Cisowska J, Szczepaniak O, Szulc P, Kikut-Ligaj D, Mikołajczak-Ratajczak A, et al. Electrochemical screening of genoprotective and antioxidative effectiveness of *Origanum vulgare* L. and its functionality in the prevention of neurodegenerative disorders. Talanta. 2021;223:121749. doi: 10.1016/j.talanta.2020.121749
- <span id="page-17-3"></span>9. Guato A, Gomes FA, Freitas HJ, Santos FGdA, Zanfangnini LG, Sandra IO, et al. Oregano extract (*Origanum vulgare*) in male free-range broilers reared in western amazon. S Am J of Basic Educ Techn Technol. 2020;7(1):325-42.
- <span id="page-17-4"></span>10. De Marins AR, Sartorelli A, Da Silva LA, De Campos TAF, Artilha CAF, Da Silva NM, et al. Influence of the addition of rosemary (*Rosmarinus officinalis* L.) and oregano (*Origanum vulgare*) on the lipid stability,texture and sensory characteristics of pork burgers. Res Soc Dev. 2021;10(11):e201101119477. doi: 10.33448/rsd-v10i11.19477
- <span id="page-17-5"></span>11. Odivi AG, Fallah S, Karimi M, Lorigooini Z. The effect of organic and chemical fertilizers on growth, yield and essential oil of hyssop *Hyssopus officinalis* L. J Soil Manage Sustain Prod. 2021;11(2):143- 58. doi: 10.22069/ejsms.2021.18578.1992
- <span id="page-17-6"></span>12. Alqarni MH, Salkini AA, Abujheisha KY, Daghar MF, Al-khuraif FA, Abdel-Kader MS. Qualitative, quantitative and antimicrobial activity variations of the essential oils isolated from *Thymus Vulgaris* and micromeria fruticosa samples subjected to different drying conditions. Arab J Sci Eng. 2022;47(6):6861-7. doi: 10.1007/s13369-021-06469-8
- <span id="page-17-7"></span>13. Souza JVRS, Ming LC, Santos MAL, Simon JE, Juliani HR, Saad JCC. Effect of water regime and harvest stage on essential oil accumulation in basil plant growing in sandy soil. Irrig Sci. 2021;39(4):493-503. doi: 10.1007/s00271-021-00719-1
- <span id="page-17-8"></span>14. Yeşil M, Özcan MM. Effects of harvest stage and diurnal variability on yield and essential oil content in *Mentha × piperita* L. Plant Soil Environ. 2021;67(7):417-23. doi: 10.17221/114/2021-pse. PubMed PMID: 7647244
- <span id="page-17-9"></span>15. Lal RK, Gupta P, Srivastva S, Chanotiya CS, Mishra A, Yadav A, et al. Delineating photosynthesis, essential oil yield performance, and their component traits under genotype  $\times$  traits  $\times$  environments interactions in *Ocimum genotypes*. S Afr J Bot. 2021;141:54-65. doi: 10.1016/j.sajb.2021.03.039
- <span id="page-17-10"></span>16.Jamwal K, Bhattacharya S, Puri S. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromat Plants. 2018;9:26-38. doi: 10.1016/j.jarmap.2017.12.003
- <span id="page-17-11"></span>17. Fishel FM. Plant Growth Regulators. EDIS. 2006;20026(6):PI-102. doi: 10.32473/edis-pi139-2006
- <span id="page-17-12"></span>18.Rademacher W. Plant growth regulators: Backgrounds and uses in plant production. J Plant Growth Regul. 2015;34(4):845-72. doi: 10.1007/s00344-015-9541-6
- <span id="page-17-13"></span>19. Sharafzadeh S, Zare M. Influence of growth regulators on growth and secondary metabolites of some medicinal plants from Lamiaceae family. Adv Environ Biol. 2011;5(8):2296-302.
- <span id="page-17-14"></span>20.Bahman S, Mehrafarin A, Naghdi Badi H. Influence of gibberellic acid, indole butyric acid, and methanol on morpho-physiological and phytochemical traits in *Thymus vulgaris* L. J Med Plants. 2017;16(61):33-44.
- <span id="page-17-15"></span>21. El-Kinany RG, Salama YE, Rozan MA, Bayom HM, Nassar AMK. Impacts of humic acid, Indole butyric acid (IBA) and arbuscular mycorrhizal fungi (*Glomus mosseae*) as growth promoters on yield and phytochemical characteristics of *Hibiscus Sabdariffa* (Roselle). Alex Sci Exch J. 2020;41:29-41. doi: 10.21608/asejaiqjsae.2020.73036
- <span id="page-18-0"></span>22. Hasan-beigi H, Saidi M, Mohammadi M. Effects of gibberellic acid and salicylic acid application on morphophysiological characteristics and essential oil yield of *Echinacea purpurea* (L.) Moench. Iran J Appl Res Med Aromat Plants 2021;36(6):1038-51. doi: 10.22092/ijmapr.2021.342971.2795
- <span id="page-18-1"></span>23. Khan MMA, Khanam N, Uddin M, Mishra RK, Khan R. Nanotized kinetin enhances essential oil yield and active constituents of mint via improvement in physiological attributes. Chemosphere. 2022;288:132447. doi: 10.1016/j.chemosphere.2021.132447
- <span id="page-18-2"></span>24. Hiscox JD, Israelstam GF. A method for the extraction of chlorophyll from leaf tissue without maceration. Canad J Bot. 1979;57(12):1332-4. doi: 10.1139/b79-163
- <span id="page-18-3"></span>25.Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot. 1992;32(2):85-100. doi: 10.1016/0098-8472(92)90034-Y
- <span id="page-18-4"></span>26. Santos RP, Da Cruz ACF, Iarema L, Kuki KN, Otoni WC. Protocol for extraction of leaf pigments from micropropagated grapevine rootstocks. Ceres. 2015;55(4):356-64.
- <span id="page-18-5"></span>27. Wellburn AR. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiology. 1994;144(3):307- 13. doi: 10.1016/S0176-1617(11)81192-2
- <span id="page-18-6"></span>28. De Assis RMA, Carneiro JJ, Medeiros APR, De Carvalho AA, Da Cunha Honorato A, Carneiro MAC, et al. Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in *Melissa officinalis* L. Ind Crops Prod. 2020;158:112981. doi: 10.1016/j.indcrop.2020.112981
- <span id="page-18-7"></span>29. Van Den Dool H, Dec. Kratz P. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A. 1963;11:463-71. doi: 10.1016/S0021-9673(01)80947-X.
- <span id="page-18-8"></span>30. National Institute of Standards and Technology (NIST). The NIST Chemistry WebBook. Washington (US): U.S. Secretary of Commerce; 2003.
- <span id="page-18-9"></span>31. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 5. ed. Illinois (US): Allured publishing corporation Carol Stream; 2007.
- <span id="page-18-10"></span>32.Biemelt S, Keetman U, Albrecht G. Re-Aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol. 1998;116(2):651-8. doi: 10.1104/pp.116.2.651
- <span id="page-18-11"></span>33. Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000;151(1):59-66. doi: 10.1016/S0168-9452(99)00197-1
- <span id="page-18-12"></span>34.Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978; 52: 302-310. doi: 10.1016/S0076-6879(78)52032-6
- <span id="page-18-13"></span>35. Giannopolitis CN, Ries SK. Superoxide dismutases: I. occurrence in higher plants. Plant Physiol. 1977;59(2):309-14. doi: 10.1104/pp.59.2.309
- <span id="page-18-14"></span>36. Havir EA, McHale NA. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 1987;84(2):450-5. doi: 10.1104/pp.84.2.450
- <span id="page-18-15"></span>37. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22(5):867-80. doi: 10.1093/oxfordjournals.pcp.a076232
- <span id="page-18-16"></span>38.R Core Team. R: A language and environment for statistical computing. R package (treatment.ad) version 4.1.2; 2022. Available from: https:/[/www.R-project.org/](http://www.r-project.org/)
- <span id="page-18-17"></span>39. StatSoft, Inc. STATISTICA (Data Analysis Software System); version 10.2011; 2011. Available from: [http://www.statsoft.com](http://www.statsoft.com/)
- <span id="page-18-18"></span>40. Taiz L, Zeiger E, Møller IM, Murphy A. Fisiologia e desenvolvimento vegetal. Porto Alegre (RS): Artmed Editora; 2017.
- <span id="page-18-19"></span>41. Dadkhah A, Ghorbanian S, Rassam G. Foliar application effect of gibberelic acid on growth, volatile oil and nutrients content of *Satureja hortensis* L. Z Fur Arznei-Gewurzpflanzen. 2016;21(2):76-9.
- <span id="page-18-20"></span>42. Sajid M, Anjum MA, Hussain S. Foliar application of plant growth regulators affects growth, flowering, vase life and corm production of *Gladiolus grandiflorus* L. under calcareous soil. Bulg J Agric Sci. 2015;21(5):982-9.
- <span id="page-18-21"></span>43. Shah SH, Islam S, Parrey ZA, Mohammad F. Role of exogenously applied plant growth regulators in growth and development of edible oilseed crops under variable environmental conditions: a Review. J Soil Sci Plant Nutr. 2021;21(4):3284-308. doi: 10.1007/s42729-021-00606-w
- <span id="page-18-22"></span>44. Tadayon MS, Hosseini SM. Increasing the efficiency of supplemental foliar nutrition on improving reproductive disorders of pistachio by application of plant growth regulators. J Plant Growth Regul. 2022;41(2):657-71. doi: 10.1007/s00344-021-10330-5
- <span id="page-18-23"></span>45.Benincasa MMP. Análise de crescimento de plantas (noções básicas). Jaboticabal (SP): Funep; 2003.
- <span id="page-19-0"></span>46. Do Nascimento ARL, Freire CS, Da Silva AFA, De Oliveira ECA, Freire FJ, Dos Santos RL. Management of nitrogen fertilization in alkaline soil cultivated with sorghumsudan. Rev Geama Sci J Environ ScI Biotechnol. 2020;6(2):72-80.
- <span id="page-19-1"></span>47. Gupta R, Chakrabarty SK. Gibberellic acid in plant. Plant Signal Behav. 2013;8(9):e25504. doi: 10.4161/psb.25504
- <span id="page-19-2"></span>48. Hasan M, Ismail B. Effect of gibberellic acid on the growth and yield of groundnut (*Arachis hypogaea*  L.). Sains Malays. 2018;47(2):221-5. doi: 10.17576/jsm-2018-4702-02
- <span id="page-19-3"></span>49. Kulkarni MG, Stirk WA, Southway C, Papenfus HB, Swart PA, Lux A, et al. Plant growth regulators enhance gold uptake in *Brassica juncea*. Int J Phytoremediation. 2013;15(2):117-26. doi: 10.1080/15226514.2012.683207
- <span id="page-19-4"></span>50. Arora R, Sangwan AK, Singh NP, Sharma S. Impact of IBA and bio-inoculants on growth and rhizogenesis in pomegranate (*Punica granatum*). Indian J Agric Sci. 2020;90(3):560-4.
- <span id="page-19-5"></span>51.Inoue S, Ilogu C, Sobze J-M. Effects of indole-3-butyric acid and age of stem cuttings on root morphology, growth, and survival of *Cornus sericea*. J For Res. 2022:1-8. doi: 10.1007/s11676-022- 01490-5
- <span id="page-19-6"></span>52.Ramy GEK, Atef MKN, Ahmed AAES. The role of benzyl amino purine and kinetin in enhancing the growth and flowering of three gaillardia varieties. Alex J Agric Res. 2019;64(5):277-88. doi: 10.21608/alexja.2019.80484
- <span id="page-19-7"></span>53. Hamayun M, Hussain A, Khan SA, Irshad M, Khan AL, Waqas M, et al. Kinetin modulates physiohormonal attributes and isoflavone contents of soybean grown under salinity stress. Front Plant Sci. 2015;6:377. doi: 10.3389/fpls.2015.00377
- <span id="page-19-8"></span>54. El M, Eman M, Gomaa AO, Youssef ASM, El-Nemr AM. Effect of kinetin and GA3 treatments on growth and flowering of *Dendranthema grandiflorium* cv. Art Queen plants. Middle East J Agric. 2018;7(3):801-15.
- <span id="page-19-9"></span>55.Cheng Z, Liu L. Detection of vegetation light use efficiency based on chlorophyll fluorescence spectrum. Trans Chin Soc Agric. 2010;26(2):74-80.
- <span id="page-19-10"></span>56. Xiao X, Yang M, Dong W, Zhou C, Shi L, Chen W, et al. Gibberellic acid inhibited chlorophyll degradation in post-harvest okras. Postharvest Biol Technol. 2022;190:111951. doi: 10.1016/j.postharvbio.2022.111951
- <span id="page-19-11"></span>57. Saleem MH, Fahad S, Adnan M, Ali M, Rana MS, Kamran M, et al. Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (*Corchorus capsularis* L.) plant grown in highly copper-contaminated soil of China. Environ Sci Pollut Res. 2020;27(29):37121-33. doi: 10.1007/s11356-020-09764-3
- <span id="page-19-12"></span>58. Mansouri H, Talebizadeh R. Effects of indole-3-butyric acid on growth, pigments and UV-screening compounds in *Nostoc linckia*. Phycol Res. 2017;65(3):212-6. doi: 10.1111/pre.12177
- <span id="page-19-13"></span>59.Bashri G, Singh S, Prasad SM, Ansari MJ, Usmani S, Alfarraj S, et al. Kinetin mitigates Cd-induced damagesto growth, photosynthesis and PS II photochemistry of *Trigonella* seedlings by up-regulating ascorbate-glutathione cycle. PLoS ONE. 2021;16(6):e0249230. doi: 10.1371/journal.pone.0249230
- <span id="page-19-14"></span>60. Amaro ACE, Souza ER, Santos LS, Baron D, Ono EO, Rodrigues JD. Foliar application of plant growth regulators to "Crimson Seedless" grapevine influences leaf age. Aust J Crop Sci. 2020;14(3):422-30. doi: 10.21475/ajcs.20.14.03.p1874
- <span id="page-19-15"></span>61. Hunt RW, Chinnasamy S, Bhatnagar A, Das KC. Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, *Chlorella sorokiniana*. Appl Biochem Biotechnol. 2010;162(8):2400-14. doi: 10.1007/s12010-010-9012-2
- <span id="page-19-16"></span>62. Havaux M. Carotenoid oxidation products as stress signals in plants. Plant J. 2014;79(4):597-606. doi: 10.1111/tpj.12386
- <span id="page-19-17"></span>63. Amengual J. Bioactive properties of carotenoids in human health. Nutrients. 2019;11(10):2388. doi: 10.3390/nu11102388
- <span id="page-19-18"></span>64. Nabi F, Arain MA, Rajput N, Alagawany M, Soomro J, Umer M, et al. Health benefits of carotenoids and potential application in poultry industry: A review. J Anim Physiol Anim Nutr. 2020;104(6):1809- 18. doi: 10.1111/jpn.13375
- <span id="page-19-19"></span>65.Bano U, Khan AF, Mujeeb F, Maurya N, Tabassum H, Siddiqui MH, et al. Effect of plant growth regulators on essential oil yield in aromatic plants. J Chem Pharm Res. 2016;8(7):733-9.
- <span id="page-19-20"></span>66. Prins CL, Vieira IJC, Freitas SP. Growth regulators and essential oil production. Braz J Plant Physiol. 2010;22(2):91-102. doi: 10.1590/S1677-04202010000200003
- <span id="page-19-22"></span><span id="page-19-21"></span>67. Singh A, Bhatt SS, Pandey Y, Kumar N, Adarsh A. Efficacy of auxins and gibberellic acid on floral attributes and essential oil yield on German chamomile (*Matricaria chamomilla* L.). Med Plants-Int J Phytomed Relat Ind. 2016;8(1):52-5. doi: 10.5958/0975-6892.2016.00007.1
- 68. Mahmoudi D, Shekari F, Afsahi K, Maleki A. Evaluation of the responses of basil to the application of salicylic acid and gibberellic acid. Zemdirbyste-Agric. 2022;109(2):131-8. doi: 10.13080/za.2022.109.017
- <span id="page-20-0"></span>69.Bose SK, Yadav RK, Mishra S, Sangwan RS, Singh AK, Mishra B, et al. Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in *Mentha arvensis* L. Plant Physiol Biochem. 2013;66:150-8. doi: 10.1016/j.plaphy.2013.02.011
- <span id="page-20-1"></span>70. Abbas SM, EL-Saeid HM. Herb, oil yield and hormonal content of lemon grass in relation to some growth regulators. J Funct Environ Botany 2012;2(2):113-7. doi: 10.5958/j.2231-1742.2.2.011
- <span id="page-20-2"></span>71. Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS. Regulation of essential oil production in plants. Plant Growth Regul. 2001;34(1):3-21. doi: 10.1023/a:1013386921596
- <span id="page-20-3"></span>72. Assaf M, Korkmaz A, Karaman Ş, Kulak M. Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. S Afr J Bot. 2022;144:480-93. doi: 10.1016/j.sajb.2021.10.030
- <span id="page-20-4"></span>73. Elsayed SM, E.El-Gohary A, Hendawy S, Abd El-Naby S. Mitigation of heat stress effects on chamomile and its essential oil using melatonin or gibberellic acid and some agricultural treatments. Egypt J Chem. 2021;64(10):6017-28. doi: 10.21608/ejchem.2021.80586.3993
- <span id="page-20-5"></span>74. Thakur M, Kumar R. Foliar application of plant growth regulators modulates the productivity and chemical profile of damask rose (*Rosa damascena* Mill.) under mid hill conditions of the western Himalaya. Ind Crops Prod. 2020;158:113024. doi: 10.1016/j.indcrop.2020.113024
- <span id="page-20-6"></span>75. Mansouri H, Asrar Z, Amarowicz R. The response of terpenoids to exogenous gibberellic acid in *Cannabis sativa* L. at vegetative stage. Acta Physiol Plant. 2011;33(4):1085-91. doi: 10.1007/s11738- 010-0636-1
- <span id="page-20-7"></span>76. Hazzoumi Z, Moustakime Y, Amrani JK. Effect of gibberellic acid (GA), indole acetic acid (IAA) and benzylaminopurine (BAP) on the synthesis of essential oils and the isomerization of methyl chavicol and trans-anethole in *Ocimum gratissimum* L. SpringerPlus. 2014;3(1):321. doi: 10.1186/2193-1801-3- 321
- <span id="page-20-8"></span>77. Ghassemi-Golezani K, Nikpour-Rashidabad N, Samea-Andabjadid S. Application of growth promoting hormones alters the composition and antioxidant potential of dill essential oil under salt stress. Sci Rep. 2022;12(1):14349. doi: 10.1038/s41598-022-18717-4
- <span id="page-20-9"></span>78. García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, et al. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev. 2021;87(4):421-66. doi: 10.1007/s12229-020-09231-1
- <span id="page-20-10"></span>79. Ozden M, Demirel U, Kahraman A. Effects of proline on antioxidant system in leaves of grapevine (*Vitis vinifera* L.) exposed to oxidative stress by  $H_2O_2$ . Sci Hortic. 2009;119(2):163-8. doi: 10.1016/j.scienta.2008.07.031
- <span id="page-20-11"></span>80. Nazir F, Fariduddin Q, Khan TA. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere. 2020;252:126486. doi: 10.1016/j.chemosphere.2020.126486
- <span id="page-20-12"></span>81.Jan AU, Hadi F, Shah A, Ditta A, Nawaz MA, Tariq M. Plant growth regulators and EDTA improve phytoremediation potential and antioxidant response of *Dysphania ambrosioides* (L.) Mosyakin & Clemants in a Cd-spiked soil. Environ Sci Pollut Res. 2021;28(32):43417-30. doi: 10.1007/s11356-021- 13772-2
- <span id="page-20-13"></span>82. Ahanger MA, Alyemeni MN, Leonard W, Alamri SA, Pravej A, Muhammad A, et al. Potential of exogenously sourced kinetin in protecting *Solanum lycopersicum* from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE. 2018;13(9):e0202175. doi: 10.1371/journal.pone.0202175
- <span id="page-20-14"></span>83. Kaya C, Akram NA, Ashraf M. Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (*Zea mays* L.) plants grown at boron toxicity. J Plant Growth Regul. 2018;37(4):1258-66. doi: 10.1007/s00344-018-9827-6
- <span id="page-20-15"></span>84. Hashim AM, Alharbi BM, Abdulmajeed AM, Elkelish A, Hozzein WN, Hassan HM. Oxidative stress responses of some endemic plants to high altitudes by intensifying antioxidants and secondary metabolites content. Plants. 2020;9(7):869. doi: 10.3390/plants9070869
- 85.Johnson M, Havaux M, Triantaphylidès C, Ksas B, Pascal A, Robert B, et al. Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of *Arabidopsis* to photo-oxidative stress by a lipidprotective, anti-oxydant mechanism. J Biol Chem.  $2007;282(31):22605-18$ . 10.1074/jbc.M702831200
- 86. Lim BP, Akihiko N, Junji T, Kazunobu T, Tetsuya S, Kozo T. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim Biophys Acta Bioenerg. 1992;1126(2):178-84. doi: 10.1016/0005-2760(92)90288-7

87. Mortensen A, Skibsted LH. Importance of carotenoid structure in radical-scavenging reactions. J Agric Food Chem. 1997;45(8):2970-7. doi: 10.1021/jf970010s