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In this paper, the dynamics of a microbeam is investigated from the point of view of nonlinear oscillations. 

Because it regards a non-linear problem, the natural frequency is more complex to obtain. Phenomena such 

as bifurcations and doubling periods, common in nonlinear systems, may appear. To carry out the ongoing 

analysis, two components are necessary: first, the equations of motion and, second, the techniques for 

investigating the behavior of the system. With respect to the equations of motion, deformation gradient 

theory is used. Concerning the second component, the following approach is employed: techniques of 

perturbation methods due to the non-linearities present in the model, with the objective of analyzing its 

oscillations. The important contribution of this investigation resides in a new approach to the equations of 

motion originated from the formulation of deformation gradient for the context of beams. For future 

research, it is intended to propose a new stiffness matrix. In the section of computational experiments, 

results that simulate the behavior of the eigenvalues, eigenfunctions, and solutions of the equation of motion 

are presented. 

Keywords: deformation gradient, solid mechanics, perturbation methods. 

 

Neste trabalho, a dinâmica de uma microviga e investigada do ponto de vista de oscilações não lineares. 

Por se tratar de um problema não linear, a frequência natural é mais complexa de se obter. Fenômenos como 

bifurcações e duplicação de períodos, comuns em sistemas não lineares, podem aparecer. Para se fazer a 

análise, são necessários dois componentes: primeiro, as equações de movimento e, segundo, as técnicas 

para investigar o comportamento do sistema. Com respeito as equações de movimento, a teoria de 

deformação gradiente e usada. Com respeito ao segundo componente, a seguinte abordagem será utilizada: 

técnicas de métodos perturbativos devido as não linearidades presentes no modelo, com o objetivo de 

analisar suas oscilações. A importante contribuição do presente trabalho reside em uma nova abordagem 

das equações de movimento originadas a partir da formulação da deformação gradiente para o contexto de 

vigas. Para trabalhos futuros, pretende-se propor uma nova matriz de rigidez. Na parte de experimentos 

computacionais, são apresentados resultados que simulam o comportamento dos autovalores, autofunções 

e soluções da equação de movimento. 

Palavras-chave: deformação gradiente, mecânica dos sólidos, métodos perturbativos. 

1. INTRODUCTION 

Micromechanical structures play an important role in science and technology, according to 

Vatankhah et al. (2015) [1]. As an example of applications of such technologies, we can cite 

microforces used in the inspection and characterization of surfaces, according to Arjmand et al. 

(2008) [2]; microswitches used to control high frequencies, according to Joglekar and Pawaskar 

(2011) [3] and microresonators acting at specific frequencies, study carried out by Hassanpour et 

al. (2010) [4]. According to Seok and Scarton (2006) [5], due to its efficiency, simplicity in 

structural architecture and production, all this equipment, along with a wide variety of 

applications such as micropressurizers, mass sensors and microflexible joints make them an 

attractive audience in the micro equipment production industry, according to studies by 

Vatankhah et al. (2015) [1]. 

One of the great difficulties in the analysis of oscillations in microstructures refers to the 

equations of motion of the system. Recent studies presented the motion equations of electrostatic 
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actuators, allowing the identification of oscillations of such mechanisms subject to specific 

boundary conditions based on the theory of deformation gradient, as per Qian et al. (2012) [6]. 

Also, properties of pull-in instability and pull-in tension were systematically investigated by 

several authors, like Mojahedi et al. (2010) [7], for instance. 

The growing need for better and more accurate performance of microscale instruments has 

increased research in this area, particularly with regard to modeling issues. As an example of 

problems raised in the literature lies in the work of Vagia (2012) [8], who studied the design of 

linear and non-linear controllers and actuators for the suppression of vibration modes of 

microstructures. Furthermore, Wang (1998) [9] covered the feedback control switched for 

vibration stabilization, and Yen et al. (2005) [10] proposed the use of sliders discrete to eliminate 

vibrations caused by moving bases. 

In the qualitative analysis of microstructures, such as movement stability, vibration 

stabilization of controllers and actuators, one must take into account the set of parameters that 

interfere with both the dynamics and the analysis of the performance of such systems. Therefore, 

the development of order reduction techniques on the parameter set is important. In this sense, 

Vagia et al. (2008) [11] present order reduction techniques based on the Rayleigh-Ritz method. 

In recent papers, Vatankhah et al. (2013) [12] proposed a new deformation model considering 

terms of order three in the curvature expression, introducing non-classical continuum mechanics, 

called deformation gradient theory by some authors, according to Vatankhah et al. (2013) [13]. 

In the context of the theory of elasticity, expressive contributions were presented by Lam et al. 

(2003) [14]. Using deformation gradient theory, new equations of motion were presented to better 

describe the displacement of microbeams. Among the many contributions, we mention Vatankhah 

et al. (2014) [15], who studied dynamic behavior with static characteristics, also called bifurcation 

theory, dynamic behavior, and stability properties of microbeams; deformations by static 

deflection, buckling and free vibrations of microbeams, according to Ansari et al. (2013) [16]; 

forced system vibrations, as per Vatankhah et al. (2013) [13]. 

All things considered; the objective of this paper is to analyze the behavior of the microbeam. 

For this, it is assumed that the displacement of the structure obeys a harmonic type movement. 

Due to the non-linearity of the electric field and the considerable amount of parameters present in 

the model, the present methodology naturally leads to renormalization problems, which allows 

the introduction of perturbation methods in the analysis. Such methodology makes possible the 

calculation of the eigenvalues of the system providing a dynamic analysis of the behavior of the 

structure. Finally, a case study is done to compare the results obtained with values already used 

in the literature. In this sense, a new stiffness matrix for the deflection of beams based on the 

theory of deformation gradient is proposed. 

2. MATERIALS AND METHODS 

The system considered is a microbeam fixed at one end and free at the other, which is subjected 

to a deflection force F, which is specified by the electrodes, as seen in Figure 1.  

 
Figure 1: Beam control scheme. 

When the electric field (charge q) is activated, the control of the device is triggered and the 

equilibrium of the system is sought from the following parameters: constant cross-sectional area, 

denoted by A, density ρ, length L thickness ℎ. The partial differential equation that models the 
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beam displacement as well as the boundary conditions are obtained using Hamilton’s principle 

along with deformation gradient theory. 

According to Lam et al. (2003) [14] deformation gradient theory, the equation of motion of 

the microbeam that describes the behavior of 𝑤, with constant cross section through the axis along 

its length, subject to excitations and control parameters described in Figure 1, is given by the 

following equation: 

 

𝜌𝐴𝜕𝑡𝑡𝑤 + 𝑘1𝜕𝑥
4𝑤 − 𝑘2𝜕𝑥

6𝑤 =  𝐹(𝑤, 𝑑), 𝑥 ∈  [0, 𝐿], 𝑡 ≥ 0,                          (1) 

 

 It is also subject to the following boundary conditions: 

 

                                   𝑤(0, 𝑡) = 0, 
                               𝜕𝑥𝑤(0, 𝑡) = 0, 
                              𝜕𝑥

2𝑤(0, 𝑡) = 0, 
                              𝜕𝑥

3𝑤(0, 𝑡) = 0, 
                              𝜕𝑥

5𝑤(0, 𝑡) = 0, 
𝜕𝑥
4𝑤(𝐿, 𝑡) − 𝜕𝑥

2𝑤(𝐿, 𝑡) = 0, 𝑡 ≥ 0.                                                                                                   (2)  
 

For more details on the physical meaning of boundary conditions, see Huston and Josephs 

(2008) [17]. The parameters 𝑘𝑖, 𝑖 =  1, 2 are given, respectively, by 

 

𝑘1 = 𝐸𝐼 + 𝜇𝐴 (2𝑙0
2 +

43

225
𝑙1
2 + 𝑙2

2)                                                                            (3) 

𝑘2 = 𝜇𝐼 (2𝑙0
2 +

4

5
𝑙1
2),                                                                                                     (4) 

 

where 

• 𝑙 is the second moment of area of the beam; 

• 𝐸 is Young’s modulus; 

• µ is the shear modulus; 

• 𝑙𝑖 , 𝑖 =  0, 1, 2, represent the parameters associated with gradient dilation (𝑙0); the 

divergent resistance (𝑙1) and the gradient rotation (𝑙2). 
For more details, see Vatankhah et al. (2013) [12]. 

The electrical forces acting on the beam to maintain its equilibrium when subjected to external 

forces are given by 

 

𝐹(𝑥,𝑤, 𝑑) =
1

2
𝜖𝜓(𝑥)((𝑑 − 𝑤)−2 − (𝑑 + 𝑤)−2),                                                   (5) 

 

where 

• 𝜖 corresponds to the electrical allowability; 

• d refers to the distance between the electrodes; 

• w is the beam displacement vector. 

3. RESULTS AND DISCUSSION 

This section aims to determine the frequency equations for the problem. For this, consider the 

following dimensionless group 

 

𝜏 =
𝑡

𝑇
, 𝜉 =

𝑥

𝛿𝐿
,𝑤 = 𝑑𝑣.                                                                                               (6) 

By replacing (6) to (1), we get: 

 
𝜌𝐴

𝑇2
𝜕𝑡𝑡𝑣(𝜏, 𝜉) +

𝑘1
𝛿4𝐿4

𝜕𝜉
4𝑣(𝜏, 𝜉) −

𝑘2
𝛿6𝐿6

𝜕𝜉
6𝑣(𝜏, 𝜉) =                                                    
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 =  −0.5𝜖𝜓(𝜉) ((𝑑 −  𝑣(𝜏, 𝜉))
−2
− (𝑑 + 𝑣(𝜏, 𝜉))

−2
),                                       (7) 

 

where 𝑤 and 𝑣 are related by the following equation 

  

𝑤(𝑡, 𝑥)  =  𝑣(𝜏, 𝜉).                                                                                           (8) 

 

The parameters 𝑇 and 𝛿 are defined as 

𝑇 =
√𝜌𝐴𝑘2

𝑘1√𝑘1
,                                                                                                                   (9) 

𝛿 =
√𝑘2

√𝑘1𝐿
.                                                                                                                    (10) 

 

On the other hand, the perturbation parameter ε is defined as 

 

𝜀 =
0.5𝜖𝑘2

2

𝑑3𝑘1
3 .                                                                                                                  (11) 

 

It will be assumed that the solution is separable into x and t, which means that the solution (1) 

is given by 

 

𝑤(𝑥, 𝑡)  =  𝑤(𝑥)𝑒𝑖𝜔𝑡.                                                                            (12) 

 

By introducing (12) into (1) and considering stationary motion, we obtain 

 

                        𝑘1𝑤
𝑖𝑣 − 𝑘2𝑤

𝑣𝑖 + 𝜆𝜌𝐴𝑤 = 0.5𝜖𝜓(𝑥)((𝑑 − 𝑤)−2 + (𝑑 +  𝑤)−2),  
                  𝐵𝑖(𝑤) = 0,                                                                                               (13) 

 

where 𝜆 = −𝜔2 and 𝐵𝐼, 𝑖 = 1: 6 are the boundary conditions given in (1). 

In the analysis of the eigenvalue problem (13), some definitions referring to functional analysis 

are necessary. First, we will assume that the functions of interest are real and differentiable in the 

domain 𝐷: 0 <  𝑥 <  𝐿. The solution space of the problem, to be correctly defined, must consider 

the operator acting on (13), which is of the order of 6 =  2𝑝, 𝑝 =  3. This space will be denoted 

by ∥𝐵
2𝑝

 showing that the derivatives of order 2𝑝 of 𝑤 have finite energy, which is 

 

∫𝑤2𝑑𝑥 < ∞

𝐿

0

,                                                                                                              (14) 

 

with the boundary conditions (1). It follows from (7) that the equation (15) is valid 

 

          𝐻𝑤 + 𝜆𝑤 = 𝜀𝐹(𝑤),                                                                                     (15) 

 

subject to boundary condition 

 

 𝐵(𝑤) = 0,                                                                                                        (16) 

 

where H is the operator given by 

 

𝐻 =
𝑑4

𝑑𝑥4
−
𝑑6

𝑑𝑥6
.                                                                                                          (17) 

 

𝐵(·) is the boundary conditions given in (1) and 𝐹 (·) is the non-linear function given by 
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𝐹(𝑤) = 0.5𝜓(𝑥)((1 −  𝑤)−2 − (1 +  𝑤)−2).                                      (18) 

 

For small ε, we have looked for a solution given by 

 

                        𝑤 = 𝑤0 +  𝜀𝑤1  + ⋯ , 
 𝜆 = 𝜆0 +  𝜀𝜆1 +⋯.                                                                                          (19) 

 

By substituting (19) into (15) and equating the terms of the same power, we propose the 

following boundary value problem 

 

                     𝐻𝑤0 + 𝜆0𝑤0 = 0, 𝐵(𝑤0) = 0, 

                    𝐻𝑤1  + 𝜆0𝑤1 = 𝜆1𝑤0 + 𝐹(𝑤0).                                                          (20) 

 

The first equation of (16) can be written as 

 

𝑑4𝑤0
𝑑𝑥4

−
𝑑6𝑤0
𝑑𝑥6

+ 𝜆0𝑤0 = 0                                                                                                  

𝐵(𝑤0) = 0,                                                                                                        (21) 

 

Assuming that 𝑤0 = 𝑒
𝑠𝑥 and substituting in (21) we obtain the frequency equation 

 

𝑠4 − 𝑠6 + 𝜆 = 0.                                                                                         (22) 

  

The general solution of (21) is given by 

 

∅ =∑𝑐𝑖𝑒
𝑠𝑖(𝜆)𝑥

6

𝑖=1

                                                                                                          (23) 

 

where 𝑐𝑖, 𝑖 = 1: 6 are arbitrary constants. To determine the frequency equation for 𝜆 we consider 

the Wronskian 

 

𝑤𝑟𝑖𝑗(𝑥) =  𝑠𝑖
𝑗
𝑒𝑠𝑖𝑥, 𝑖 = 1 ∶ 6, 𝑗 = 0 ∶ 5.                                                   (24) 

 

By using the boundary conditions of the problem, we achieve the following matrix 

 

𝑤𝑟(0, 𝐿, 𝜆) = 

=

|

|

(

 
 
 
 

1
𝑠1

1
𝑠2

1
𝑠3

1
𝑠4

1
𝑠5

1
𝑠6

𝑠1
2

𝑠1
3𝑒𝑠1𝐿

𝑠2
2

𝑠2
3𝑒𝑠2𝐿

𝑠3
2

𝑠3
3𝑒𝑠3𝐿

𝑠4
2

𝑠4
3𝑒𝑠4𝐿

𝑠5
2

𝑠5
3𝑒𝑠5𝐿

𝑠6
2

𝑠6
3𝑒6𝐿

(𝑠1
4 − 𝑠1

2)𝑒𝑠1𝐿

𝑠1
5

(𝑠2
4 − 𝑠2

2)𝑒𝑠2𝐿

𝑠2
5

(𝑠3
4 − 𝑠3

2)𝑒𝑠3𝐿

𝑠3
5

(𝑠4
4 − 𝑠4

2)𝑒𝑠4𝐿

𝑠4
5

(𝑠5
4 − 𝑠5

2)𝑒𝑠5𝐿

𝑠5
5

(𝑠6
4 − 𝑠6

2)𝑒𝑠6𝐿

𝑠6
5 )

 
 
 
 

|

|

.   (25) 

 

For the purpose of numerical experiments, it is shown that  

 

𝑤𝑟(0, 𝐿, 𝜆) =∏𝜎𝑖

6

𝑖=1

,                                                                                                  (26) 

 

where 𝜎𝑖(𝜆), 𝑖 = 1: 6 are the eigenvalues of 𝑤𝑟(0, 𝐿, 𝜆). By using the variational principle, 𝜎𝑖(𝜆) 
can be written as 

 

𝜎𝑖(𝜆) =
𝑢𝑖
⊥𝑊𝑟(0, 𝐿, 𝜆)𝑢𝑖

𝑢𝑖
⊥𝑢𝑖

,                                                                                         (27) 
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where 𝑢𝑖 is the eigenvector of 𝑤𝑟(0, 𝐿, 𝜆) associated with the eigenvalue 𝜎𝑖. The previous 

considerations now allow us to determine the frequency equation for (21) 

 

                         𝑤𝑟(0, 𝐿, 𝜆) = 0.                                                                                         (28) 

 

For greater precision of the behavior of the eigenfunctions, Figure 2 depicts the imaginary part 

of the roots of (28) for a range of values for the eigenvalues 𝜆 between −1.5 and 1.5. It appears 

that, depending on the initial conditions of the problem, the eigenfunctions may have a minimum 

or maximum frequency, which shows the oscillatory character of the roots of (28). 

 
Figure 2: Behavior imaginary part roots of the characteristic equation of 𝐻. 

Figure 3 presents the behavior of the real part of the roots of the characteristic equation (22). 

 
Figure 3: Behavior real part roots of the characteristic equation of 𝐻. 
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At this point, it is important to observe in Figure 3 that the range of oscillation amplitude of 

the roots of the equation (22) is in the range of 𝑂(−16) , characterizing the stability of the 

solution. Finally, Figures 4 and 5 show the behavior of both the real and imaginary parts of the 

eigenfunctions. 

 
Figure 4: Behavior imaginary part roots of the characteristic equation of 𝐻. 

 
Figure 5: Behavior part real eigenfunctions of 𝐻.  

By considering the expansion (19), we have 

 

𝐻(𝜙0 + 𝜖𝜙1 + 𝑔(𝜖
2)) + 𝜆(𝜙0 + 𝜖𝜙1 + 𝑔(𝜖

2)) = 𝜖(𝜙0 + 𝜖𝜙1 + 𝑔(𝜖
2)).  (29) 
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By using the linearity of 𝐻 , the expression at (29) becomes 

 

𝐻𝜙0 + 𝜆0𝜙0 + 𝜖(𝐻𝜙1 + 𝜆1𝜙0 ++𝜆0𝜙1) +  𝑔(𝜖
2) = 𝜖𝐹(𝜙0 + 𝜖𝜙1 + 𝑔(𝜖

2)).  (30) 

 

By using the expansion of F, 

 

                          𝐹 = 0.5𝜓(𝑥)((1 − 𝑥)−2 − (1 + 𝑥)−2) 
                              =   0.5𝜓(𝑥)((1 +  2𝑥 +  𝑔(𝜖2))  − (1 −  2𝑥 +  𝑔(𝜖2))) 

=    0.5𝜓(𝑥)(4𝑥 +  𝑔(𝜖2)),                                                                        (31) 

 

the expression in (30) becomes 

 

                               𝐹(𝜙) = 0.5𝜀𝜓(𝑥) ∗ (4𝜙 + 𝑔(𝜙2)) 

= 2𝜀𝜓(𝑥)𝜙0 + 𝜀2𝜖𝜓(𝑥)𝜙1𝑔(𝜖
2)                                                           (32) 

 

By returning again in the expression (30) and equating the terms of the same power, 

 

                               𝐻𝜙0 + 𝜆0𝜙0 = 0, 𝐵(𝜙0)  =  0, 

𝐻𝜙1  +  𝜆0𝜙1 = −𝜆1𝜙0 + 2𝜀𝜓(𝑥)𝜙0.                                                    (33) 
 

we will consider 𝜙1 as the direct sum of the eigenfunctions um of 𝐻. We will also put 𝜙0𝑛 = 𝑢𝑛 

and 𝜆0𝑛 = 𝜇𝑛. By using the orthogonality of the eigenfunctions un, problem (33) can be written 

as 

 

𝑎𝑠(𝜇𝑠 − 𝜇𝑛) = −𝜆1𝛿𝑠𝑛 + 2𝜀∫𝜓(𝑥)𝑢𝑛�̅�𝑠𝑑𝑠

𝐿

0

.                                                  (34) 

 

From the equation (34), we see that if s = n, 

𝜆1𝑛 = 2𝜀∫𝜓(𝑠)𝑢𝑛
2𝑑𝑠

𝐿

0

.                                                                                           (35) 

 

On the other hand, if 𝑠 ≠  𝑛, 

 

𝑎𝑚𝑠 =
2𝜀

𝜇𝑠 − 𝜇𝑛
∫𝜓(𝑥)𝑢𝑚𝑢𝑠𝑑𝑥

𝐿

0

.                                                                             (36) 

 

Is it possible to show  𝑎𝑚𝑚 =  0 in the analysis from Nayfeh (2008) [18]. This leads to the 

following formula for the eigenvalues of 𝐻, 

 

𝜆𝑛 = 𝜆0𝑛 + 𝜀𝜆1𝑛 + 𝑔(𝜀
2).                                                                              (37) 

 

With the eigenvalues 𝜆𝑛 provided by the equation (37), we can now calculate the natural 

frequency of the beam which is given by the equation 

 

𝑤𝑛 = −𝑖√𝜆𝑛.                                                                                                   (38) 

 

Finally, by using the information about the natural frequencies of the structure, the equation 

of state of the system becomes the following: 

 

𝑤𝑛,𝑖(𝑥, 𝑡) = 𝑒
𝑠𝑖
𝑛𝑥−𝑗𝑤𝑛𝑡.                                                                                   (39) 
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4. CONCLUSION 

In the present paper, the dynamic behavior of a microbeam subjected to an electric field has 

been studied. The analysis has been carried out using the theory of deformation gradient, which 

led to a characteristic equation of order six, in addition to the linearities inherent to the model. To 

obtain the eigenfunctions of the H operator, the perturbative method has been used. Numerical 

simulations have been analyzed in two ranges, [-1.50, 1.50] and [0.45, 1.50]. In the first range, a 

well-determined behavior of the imaginary part of the eigenvalues may be observed. With respect 

to the second range, attention is drawn to the oscillation amplitude of the real part of the 

eigenvalues varying in an interval around 10−15. From the previous graphs, it has been observed 

that the system has several oscillations, converges between the two ranges mentioned above, 

reaching equilibrium. Thus, it is expected that the structure also have this stability behavior. 
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