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The Hubbard model has been subject of strong interest in the condensed matter community. It is the 
simplest model for strongly correlated electron systems. The text books of physics are based on 
applications, under the form of problems, which have exact analytical solutions. Itinerant magnetic 
system models, for that reason, are rarely considered in text books of statistical mechanics. The students 
interested in the study of strongly correlated electron systems, normally, feel in the beginning of their 
studies a great difficulty in understanding the complex correlations of these systems. In this work, we 
have studied, with a pedagogical approach, the thermodynamic properties of the Hubbard model for a 
diatomic molecule AB, that is, we consider a case translationally non-invariant. We apply the grand 
canonical ensemble method for allowing the analysis of a general situation of any average electron 
number per site. In the applications we consider, in particular, the case in which the average electron 
number per site is one. The analysis of the thermodynamic properties makes possible to conclude that the 
diatomic molecule AB of Hubbard exhibits ferrimagnetic behavior. Moreover, the studied system presents 
a conceptual and mathematical structure accessible to undergraduate students of physics in their last year, 
and the results show a rich variety of physics phenomena with details that make feasible a deeper 
comprehension of the quantum mechanisms involved in the thermodynamics properties and of the 
methods employed to obtain such properties. 
Keywords: Hubbard model, diatomic molecule, exact diagonalization, thermodynamic properties. 
 
O modelo de Hubbard tem sido um assunto de grande interesse para os pesquisadores da área de física da 
matéria condensada. Ele é o modelo mais simples para sistemas de elétrons fortemente correlacionados. 
Os livros didáticos de física são baseados em aplicações, sob a forma de problemas, que possuem 
soluções analíticas exatas. Modelos de sistemas magnéticos de elétrons itinerantes, por essa razão, 
raramente são considerados nos livros didáticos de mecânica estatística. Os estudantes interessados no 
estudo de sistemas de elétrons fortemente correlacionados, normalmente, sentem no começo de seus 
estudos uma grande dificuldade em compreender as complexas correlações desses sistemas. Neste 
trabalho, nós estudamos, de forma didática, as propriedades termodinâmicas do modelo de Hubbard para 
uma molécula diatômica AB, isto é, nós consideramos um caso translacionalmente invariante. Nós 
aplicamos o método do ensemble grande canônico para permitir a análise de uma situação geral de 
qualquer número médio de elétrons por sítio. Nas aplicações nós consideramos, em particular, o caso em 
que o número médio de elétrons por sítio é um. A análise das propriedades termodinâmicas faz possível 
concluir que a molécula diatômica AB de Hubbard exibe comportamento ferrimagnético. Além disso, o 
sistema estudado apresenta uma estrutura matemática e conceitual acessível a estudantes do último ano de 
graduação em física, e os resultados mostram uma rica variedade de fenômenos físicos com detalhes que 
fazem possível uma compreensão profunda dos mecanismos quânticos envolvidos nas propriedades 
termodinâmicas e dos métodos empregados para obter tais propriedades. 
Palavras-chave: modelo de Hubbard, molécula diatômica, diagonalização exata, propriedades termodinâmicas. 

1. INTRODUÇÃO 

The Hubbard model [1] has been subject of strong interest in the Condensed Matter 
community [2]. It is the simplest model for strongly correlated electron systems [3]. Originally, 
it was created to describe the effect of correlations for d-electrons in transition metals, leading to 
collective effects as itinerant magnetism and metal-insulator transition, and has been often used 
to describe real materials exhibiting these phenomena [4,5]. After some time, beyond the 



M. C. B. de Souza and C. A. Macedo, Scientia Plena 4, 094401 , 2008                                           2 

 

original applications, it also began to be used to study new phenomena such as heavy fermions 
and high-Tc superconductivity, among others [4]. 

The text books of physics, in general, and of statistical mechanics, in particular, are based on 
applications, under the form of problems, which have exact analytical solutions. Itinerant 
magnetic system models, for that reason, on the contrary of the localized magnetic system 
models, are rarely considered in the text books of statistical mechanics. A previous paper [6], of 
which this may be regarded as a continuation, has presented results of pedagogical exact 
calculations on thermodynamic properties of the two-atom Hubbard model. There the canonical 
ensemble method of statistical mechanics was applied. Here, we apply the grand canonical 
ensemble method for studying a pedagogical general situation of any average electron number 
per site. In the applications we consider, in particular, the case in which the average electron 
number per site is one. 

We consider the Hubbard Hamiltonian in its simplest form [1], 

∑∑ ↓↑
><

+−=
i

iii
ij

ji nnUcctH
σ

σσ
,

†                                            (1) 

where  σσ jj cc  ,†  and σjn are the creation, annihilation and number operators for an electron with 
spin σ at the ith site, respectively. t is the nearest-neighbor hopping amplitude, and Ui is the on-
site electron-electron repulsion. The symbol <ij> denotes the sum over nearest-neighbor sites. 
The on-site electron-electron repulsion Ui is usually assumed translationally invariant, namely 
Ui = U, but, in this work, we consider a translationally non-invariant case. Here, we examine a 
simple system of two different sites (Ns = 2) forming a diatomic molecule AB. In this case we 
denote the sites as i = a, b, and the Hamiltonian (1) can be rewritten as 

↓↑↓↑ +++−= ∑ bbbaaaabba nnUnnUcccctH )( ††
σσ

σ
σσ                           (2) 

As in reference [6], here we calculate exactly several thermodynamic properties of the 
Hamiltonian (2) using the method of exact analytical diagonalization calculations, but, in this 
case, with the application of the grand canonical ensemble. 

We perform an study of the temperature dependence of the internal energy, specific heat, 
entropy, magnetic susceptibility, spin-spin correlation functions, besides others quantities, for a 
wide range of values of the relative magnitudes of the Coulombian repulsions to transfer 
integral (Ua/t; Ub/t). We compare our results with those in references [6], [7], and [8], obtained 
for the translationally invariant two-sites Hubbard model, thus illustrating the effect of the 
translational non-invariance. It deserve to be detached that, we find that the translationally non-
invariant two-sites Hubbard model, that is, our diatomic molecule AB, presents the magnetic 
moments of the sites with different magnitudes, and exhibits an antiferromagnetic correlation 
between them. The direct consequence this phenomenon is that the diatomic molecule AB of 
Hubbard presents a liquid magnetic moment, that is, it exhibits a ferrimagnetic behavior. 

As was also detached in reference [6], here, in this case, also, the studied system presents a 
conceptual and mathematical structure accessible to undergraduate students of physics in their 
last year, and the results show a rich variety of physics phenomena with details that make 
feasible a deeper comprehension of the quantum mechanisms involved in the thermodynamics 
properties and of the methods employed to obtain such properties. 

This paper is organized as follows. In Sec. 2 we obtain the energy eigenvalues of the system 
and we analyze it. In Sec. 3 the quantities that we calculate are defined, and the results are 
presented. We close with a conclusion in Sec. 4. 

2. ENERGY EIGEVALUES 

Since we are working in the grand canonical ensemble, all possible number N of electrons in 
the molecule (from 0 to 4) must be considered. There are four spin orbitals in the system, and 
each one can be either empty or occupied by an electron, thus, we have altogether 24 = 16 
possible eigenstates of the Hamiltonian (2) [9]. 
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F or obtaining the eigenstates of the system we use the sixteen basis vectors given in Table I, 
where Sz is the spin component on the z-direction, and 0  denotes the vacuum state of the 
molecule without electrons. 

Table I. Configurations, basis vectors and spin components Sz of the molecule. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the number N of electrons is conserved, and 0 ≤ N ≤ 4, for a given N there are [4!/N!(4 
– N)!] eigenstates. The spin degree of freedom is also conserved by Hamiltonian (2). Thus, these 
eigenstates can be classified according to their number of electrons and spin [9]. 

 
Table II. Energy eigenvalues of the molecule. 
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Configurations 
N A B Basis vectors  Sz 

0   1 0φ =  0 

↑  2 0acφ +
↑=  

 ↑ 3 0bcφ +
↑=  

1/2 

↓  4 0acφ +
↓=  

1 

 ↓ 5 0bcφ +
↓=  

-1/2 

↑ ↑ 6 0a bc cφ + +
↑ ↑=  1 

↓ ↓ 7 0a bc cφ + +
↓ ↓=  -1 

↑ ↓ 8 0a bc cφ + +
↑ ↓=  

↓ ↑ 9 0a bc cφ + +
↓ ↑=  

↑↓  10 0a ac cφ + +
↑ ↓=  

 2 

 ↑↓ 11 0b bc cφ + +
↑ ↓=  

0 

↑↓ ↑ 
12 0a a bc c cφ + + +

↑ ↓ ↑=  
↑ ↑↓ 

13 0a b bc c cφ + + +
↑ ↑ ↓=  

1/2 

↑↓ ↓ 14 0a a bc c cφ + + +
↑ ↓ ↓=  

3 

↓ ↑↓ 15 0a b bc c cφ + + +
↓ ↑ ↓=  

-1/2 

4 ↑↓ ↑↓ 16 0a a b bc c c cφ + + + +
↑ ↓ ↑ ↓=  0 
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Separately, for each one of the groups of basis vectors identified by different pairs (N, Sz), we 
use a linear combinations of the basis vectors, nn na ϕψν ∑= , and, following the same 
procedure used in reference [6], we get the 16 eigenvalues of the energy given in Table II, 
where κ = (Ua + Ub)/2 and τ = (Ua − Ub)/2. The coefficients an of the expansion above can be 
evaluated from the normalization conditions [10]. 

 
Figure 1. Eigenvalues of the energy versus U/t for (a) N = 2 and (b) N = 3. 

 
The eigenvalues of the energy for N = 0 and 1 are independent of Ua and Ub, but some 

eigenvalues for N = 2, 3, and 4, that is, the energies E9, E10, …, E16, are dependent  of Ua and Ub. 
Figure 1 shows the interaction dependence of the eigenvalues of the energy for N = 2 and 3, in 
two cases: (i)  Ua = Ub = U, and (ii)  Ua = U  and Ub = 2U. In both cases the eigenvalues E9, E10, 
…, E15 increase when  U/t increases, but, when Ua ≠ Ub the increase of these eigenvalues with 
U/t is more rapid than in the case Ua = Ub. The ground states for N = 1 and 3 present Sz = ± 1/2, 
while for N = 0, 2, and 4, present Sz = 0. 

3. THERMODYNAMIC PROPERTIES 

The partition function from which all thermodynamic functions are obtained is given by. 

∑
=

−−=
16

1

)](exp[),(
ν

νν μβμβ NEZ ,                                    (3) 

where Eν denote the sixteen eigenvalues of Hamiltonian (2), Nν are the correspondent numbers 
of electrons in the eigenstates given in the Table II, β = 1/kBT, and µ is the chemical potential. 
 
AVERAGE NUMBER OF ELECTRONS 
 

The average number of electrons per site <n> is determined by 

∑
−−=

∂
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 For a half-filled band, that is, for <n> = 1, and Ua = Ub = U, µ = U/2 independent of 
temperature [8, 11, 12], but in the general case, Ua ≠ Ub, µ must be determined by imposing <n> 
= 1 in Eq. (4). 

For investigating the effect of the translational non-invariance in our molecule, a relevant 
quantity is the average number of electrons at each site, which we denote by <na> and <nb>. 

The derivation of these physical quantities requires the use of auxiliary fields in the 
Hamiltonian. Thus, we rewrite the Hamiltonian of the system as 

bbaa nnHH ξξ −−= ,                                                      (5) 
where H is the Hamiltonian (2), ξa and ξb are auxiliary fields, and the number operators na 

and nb are defined by 

↓↑ += iii nnn ,       i = a, b.                                                (6) 
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Following, again, the standard procedure, we get the news 16 eigenvalues of the energy that 
are given in Table III, where κ = (Ua + Ub)/2, τ = (Ua − Ub)/2, α = ξa + ξb, and γ = ξa - ξb. 

The inclusion of the auxiliary fields permits to determine <na> and <nb> by 

0,),,,(ln1
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i
i Zn ξξξξμβ
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,                                       (7) 

 
 

Table III. Eigenvalues of the Hamiltonian (5). 
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There Z(β,µ,ξa,ξb) is the partition function obtained as in (3), but with the eigenvalues of the 
Hamiltonian (5). Naturally, 

Z(β,µ,0,0) = Z(β,µ).                                                     (8) 
Figure 2 shows examples of the behavior of the average number of electrons at each site 

versus kBT/t. The curves presented for three distinct pairs of values of the relative magnitudes of 
the Coulombian repulsions to transfer integral (Ua/t; Ub/t). As in all presented cases Ua > Ub, the 
occurrence of double occupancy at site a is disfavored in comparison with the one of the site b. 
Thus, <nb> > <na> at all temperatures. Note that n = (<na> + <nb>)/2 = 1.  

 

 
Figura 2. Average number of electrons at each site versus kBT/t.  

The numbers labeling the curves refer to the values of (Ua/t; Ub/t). 
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AVERAGE NUMBER OF DOUBLY OCCUPIED SITES 
 
The average number of doubly occupied sites D is, also, an important quantity in the study of 

strongly correlated electron systems. It is defined by 

)(
2
11

ba
i

ii DDnn
Ns

D +>=<= ∑ ↓↑ ,                                          (9) 

 
where  

),(ln1 μβ
β

Z
U

nnD
i

iii ∂
∂−>==< ↓↑ ,                                         (10) 

is the average number of double occupation of electrons at site i. 
As much as the average number of electrons at each site <ni>, Di is important for investigate 

the effect of the translational non-invariance in a molecule AB. 
In the limit of Ua = Ub = 0, D = 1/4. In this case, the four possible configurations of 

occupation of each site are equally probable and the double occupation is only one between four 
possibilities. However, for a molecule AB, with Ua > Ub, the probability of the different 
configurations of occupation are not equal at each site. In this case, the double occupation at site 
a is less probable than at site b. In the limit of Ub = 0, any value of Ua, with Ua > Ub, makes the 
configuration with double occupation more probable at site b and thus, Db > 1/4. In Fig. 3 (b), 
on the curve for (4;0), Db exceeds the value ¼. 

           
 
 
 
 
 

 
MAGNITUDE OF AT EACH SITE 
 

In order to obtaining information about the temperature dependence of the magnitude of spin 
at each site we determine the functions L0a and L0b. 

><>==< 22
0 )(3 z

iii SL S ,  i = a, b.                                 (11) 

Si and z
iS  are, respectively, the spin operator and the spin component on the z-direction 

operator at site i. As 
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2
1

↓↑ −= ii
z
i nnS ,                                          (12) 

then, using the Eqs. (6) and (10) we can rewrite Eq. (11) as 

iii DnL
2
3

4
3

0 −= .                                                    (13) 

Figure 3. Average number of double 
occupation of electrons at each site versus 
kBT/t. (a) At site a and (b) at site b. The 
numbers labeling the curves refer to the values 
of (Ua/t; Ub/t). 

Figure 4. Magnitude of spin at each site versus 
kBT/t. (a) At site a and (b) at site b. The 
numbers labeling the curves refer to the values 
of (Ua/t; Ub/t). 
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Two typical values of L0i can occur: (i) Ua = Ub = 0, that causes ni = 1 and Di = ¼, 
consequently L0i = ⅜; (ii) Ua = Ub = ∞, that produces ni = 1 and Di = 0, then L0i = ¾. Figure 4 
shows curves of L0a and L0b versus kBT/t. It is observed that when Ua > Ub occurs, L0a > L0b. This 
fact is consistent with the observed behavior of ni (Fig. 2) and Di (Fig. 3), where, na < 1, nb > 1, 
and Da < Db. 

 
 
SPIN CORRELATION ON SITES 
 

In order to completing information about the magnetic structure of the diatomic molecule we 
determine the temperature dependence of the spin correlation function L1, defined by 

>⋅<= baL SS
2
1

1 ,                                               (14) 

 
where Sa (Sb) is the spin operator at the site a (b). 

The derivation this physical quantity requires, also, the use of an auxiliary field in the 
Hamiltonian. Thus, we rewrite the Hamiltonian of the system as 
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where H is the Hamiltonian (2) and λ is an auxiliary field. 
The product SaּSb can be write as 
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Expressing the raising and lowering spin operators in terms of creation and annihilation 
operators, 
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and using (12), Eq. (16) can be rewritten as  
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Following, again, the standard procedure, we get the new 16 energy eigenvalues that are 
given in Table IV. 
 

Table IV. Eigenvalues of the Hamiltonian (14). 
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 The inclusion of the auxiliary field permits L1 to be determined by 

01 ),,(ln
2
1

=∂
∂= λλμβ
λβ

ZL ,                                            (19) 

where Z(β,µ,λ) is the partition function obtained as in (3), but with the eigenvalues of the 
Hamiltonian (15). Naturally, 

Z(β,µ,0) = Z(β,µ).                                              (20) 
Figure 5 shows the temperature dependence of L1 for some typical values of (Ua/t; Ub/t). The 

temperature dependence with negative sign of L1 demonstrates how far the antiparallel ordering 
of the magnetic moments on different sites persist when the temperature is raised. 
 

The analysis of Figures 4 and 5 makes possible the constructing of a physical picture as 
follows: the magnetic moments of the sites have different magnitudes, and exhibit an 
antiferromagnetic correlation between them. The direct consequence of this phenomenon is that 
the diatomic molecule AB of Hubbard presents a liquid magnetic moment, that is, it exhibits a 
ferrimagnetic behavior. 

 
Figure 5. Spin correlation on different sites L1 versus kBT/t. 

The numbers labeling the curves refer to the values of (Ua/t; Ub/t). 
 
INTERNAL ENERGY, SPECIFIC HEAT, ENTROPY AND MAGNETIC SUSCEPTIBILITY 
 

The internal energy per site u is determined by 

∑
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ννν
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μβ
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)](exp[1

Z
NEE

Ns
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The specific heat c can be calculated by 

T
uc

∂
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The entropy per site s can be obtained from grand potential thermodynamic per site Ω, 
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Finally, the magnetic susceptibility χ per site can be calculated by 
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where µB is the Bohr magneton, g is the gyromagnetic factor, and 
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Z
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z
z                     (26) 

Figures from 6 to 9 show the temperature dependences of the internal energy, specific heat, 
entropy and magnetic susceptibility. 
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The internal energy presents, normally, as expected, larger values when the Coulomb 
repulsion is more intense. Some small variations of this behavior are explained as due to 
changes in magnetic ordering when the temperature is raised. 
 

                                 
 
 
 

 
The behavior of the specific heat with the temperature elucidates the non-monotonic 

variation of the internal energy with the Coulomb repulsion. Comparing the curves of c vs. T 
with each other one can notice that the specific heat has a peak at a slightly lower temperature 
than t/kB when the magnitude of Ui is small, while when Ui is increased, the peak splits  in two. 
The low-temperature peak arises from the antiferromagnetic ordering and the high-temperature 
peak comes from the gradual formation of local moments [7]. 

           
 
 
 
 
Figure 8 shows curves of the entropy versus temperature for the same values of (Ua/t; Ub/t) 

as before. The general behavior follows what is expected. When the temperature is raised all 
curves tend to kB ln4 which is the maximum value of the entropy per site. The change of 
curvature when Ui is increased, how explained before, corresponds to changes in magnetic 
ordering. 

All curves of the magnetic susceptibility versus temperature present a peak at the same 
temperature in which the specific heat presents the low-temperature peak and, naturally, it also 
arises from the antiferromagnetic ordering. 

4. CONCLUSIONS  

We have studied, with a pedagogical approach, the thermodynamic properties of the 
Hubbard model for a diatomic molecule AB, that is, we consider a translationally non-invariant 
case. We apply the grand canonical ensemble method for allowing the analysis of a general 

 Figure 8. Entropy per site versus temperature. 
The numbers labeling the curves refer to the 
values of (Ua/t; Ub/t). 

Figure 6. Internal energy per site versus 
kBT/t. The numbers labeling the curves refer 
to the values of (Ua/t; Ub/t). 

Figure 7. Specific heat versus temperature. The 
numbers labeling the curves refer to the values of 
(Ua/t; Ub/t). 

Figure 9. Magnetic susceptibility per site versus 
kBT/t. The numbers labeling the curves refer to 
the values of (Ua/t; Ub/t). 
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situation of any average electron number per site. In the applications we consider, in particular, 
the case in which the average electron number per site is one. 

The analysis of the average number of electrons at each site, of the average number of 
doubly occupied sites, of the magnitude of spin at each site and the spin correlation on different 
sites makes possible the constructing of a physical picture as follows: the magnetic moments of 
the sites have different magnitudes, and exhibit an antiferromagnetic correlation between them. 
The direct consequence of this phenomenon is that the diatomic molecule AB of Hubbard 
presents a liquid magnetic moment, that is, it exhibits a ferrimagnetic behavior. 

The studied system presents a conceptual and mathematical structure accessible to 
undergraduate students of physics in their last year, and the results show a rich variety of 
physics phenomena with details that make feasible a deeper comprehension of the quantum 
mechanisms involved in the thermodynamics properties and of the methods employed to obtain 
such properties. 
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