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The present paper investigated the influence of the reaction time on the quality (physical-chemical properties) 

of biofuels obtained by catalytic cracking of crude palm oil (CPO). The influence of the reaction time (10, 

20, 30, 40, 50, and 60 min) on the quality of crude biofuels denominated organic liquid products (OLP) was 

investigated through experiments carried out in a cracking pilot plant with capacity of 143 L in the following 

operating conditions: 20 wt% sodium carbonate (Na2CO3) as catalyst, 450 °C, 1 atm and batch mode 

operation. The quality of the biofuels produced was certified through physical-chemical analyzes (acid value, 

saponification value, specific gravity, refractive index, kinematic viscosity, corrosiveness to copper, and flash 

point). The results show that the physical-chemical properties of OLP decrease as the reaction time increases, 

in such a way that, catalytic cracking process occurs efficiently in the interval of 10 to 20 min after its start, 

which can be finalized when it reaches 30 minutes of reaction. In addition, Na2CO3 was essential as a catalyst 

in the cracking reaction to reduce the physical-chemical properties of OLPs obtained at different times, 

allowing the specific gravity, kinematic viscosity and corrosivity to copper to be within or very close to the 

limits established for Diesel S10. 

Keywords: Bio-oil, organic liquid product, pilot plant. 

 

O presente trabalho investigou a influência do tempo de reação sobre a qualidade (propriedades físico-

químicas) de biocombustíveis obtidos por craqueamento térmico catalítico de óleo de palma bruto (OPB). A 

influência do tempo de reação (10, 20, 30, 40, 50 e 60 min) sobre a qualidade dos biocombustíveis brutos 

denominados produtos orgânicos líquidos (PLO) foi investigada por meio de experimentos realizados em 

uma planta piloto de craqueamento com capacidade de 143 L nas seguintes condições operacionais: 20% em 

massa de carbonato de sódio (Na2CO3) como catalisador, 450 °C, 1 atm e operação em batelada. A qualidade 

dos biocombustíveis produzidos foi certificada através de análises físico-químicas (índice de acidez, índice 

de saponificação, massa específica, índice de refração, viscosidade cinemática, corrosividade ao cobre e 

ponto de fulgor). Os resultados mostram que as propriedades físico-químicas do PLO diminuem com o 

aumento do tempo de reação, de forma que o processo de craqueamento catalítico ocorre de forma eficiente 

no intervalo de 10 a 20 min após seu início, podendo ser finalizado quando atinge 30 minutos de reação. 

Além disso, o Na2CO3 foi essencial como catalisador na reação de craqueamento para redução das 

propriedades físico-químicas dos PLOs obtidos em diferentes tempos, permitindo que a gravidade específica, 

viscosidade cinemática e corrosividade ao cobre fique dentro ou muito próximos dos limites estabelecidos 

para Diesel S10. 

Palavras-chave: Bio-óleo, produto líquido orgânico, planta piloto. 

1. INTRODUTION 

Currently, fossil fuels represent the primary sources of energy that have met the energy demand 

of modern society. However, limited reserves of fossil fuels and global warming make their use 

unsustainable and cause environmental problems related to their combustion due to the emission of 

large amounts of CO2 [1]. In this sense, environmentally friendly biofuels can be an alternative 

source of renewable and sustainable energy to meet the global energy demand for the transport 
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sector [1, 2], which is considered the second fastest growing sector concerning energy consumption 

[3]. 

Production of biofuels that are made up of hydrocarbons can be carried out by several different 

routes [4]. Catalytic cracking [5-21] is one of the routes that can be applied effectively to feedstocks 

based on triglycerides such as vegetable oils to produce hydrocarbons [22]. Catalytic cracking of 

vegetable oils can generate the following products: gaseous biofuels, including hydrocarbons C1-

C5, CO and CO2; liquid biofuels, which are called bio-oil or organic liquid product (OLP); water 

and coke [23-26]. 

Several publications report the parameters that influence the catalytic cracking process of 

vegetable oils and the effect of these parameters on the yield and physical-chemical property values 

of OLP [11, 15-17, 22, 27-33]. Such parameters are temperature, reaction time, heating rate, gas 

flow rate, feed rate, particle size, presence of water, type of catalyst and biomass composition, 

among others [11, 15-17, 22, 27-33]. In parallel, the values of the physical properties of OLP are 

the result of its chemical composition [24], which in turn is dependent on the source of biomass 

and the operational conditions used in its production [28, 34, 35]. 

According to Chew and Bhatia (2008) [21], the temperature of the catalytic cracking process (in 

this case, 450°C) is lower than the pyrolysis (500-850°C). Idem et al. (1996) [36] have carried out 

the thermal cracking of canola oil, which was carried out in a fixed bed reactor in the presence and 

absence of steam, with the temperature between 300 and 500°C on atmospheric pressure, obtaining 

as a result a yield of 54% (w/w) into Hydrocarbons. Dandik and Aksoy (1998) [37]evaluated the 

residual sunflower oil conversion by thermal catalytic cracking in the presence of acid catalysts and 

sodium carbonate, varying the temperature between 400 and 420ºC. The results of this study 

showed a yield of 32.8% (w/w) of liquid hydrocarbons with the use of sodium carbonate and 420ºC. 

Li et al. (2009) [38] have carried out the thermal catalytic cracking of cottonseed oil in a reactor of 

fixed-fluidized bed and 1 atm using one zeolite as catalyst. The authors investigated the effect of 

temperature (400-500°C), ratio catalyst/oil (6-10) and residence time (50-90s) on the yield of 

gasoline and diesel fractions. The results showed that the optimal condition for thermal catalytic 

cracking of cottonseed oil produce the highest yield of these fractions was: reaction temperature of 

426.2°C, ratio catalyst/oil of 7.8 g/g and residence time of 50.2s, getting 65.6% (w/w) of diesel 

fraction (≤ 360°C) and 33.7% (w/w) of gasoline fraction (≤ 200°C) and a minimum yield of gas 

equal to 11.6% (w/w). 

Regarding the type of catalyst used in the catalytic cracking process, basic catalysts such as 

sodium carbonate (Na2CO3) have been investigated in order to convert triglyceride-based 

feedstocks into biofuels with low carboxylic acid content [7, 19, 23, 31, 36-41]. Junming et al. 

(2009) [42] cracked soybean oil with basic catalysts (Na2CO3, Al2O3, K2CO3) in the temperature 

range of 350 to 400 °C, obtaining biofuels with a diesel-like chemical composition, with low acid 

values and good cold flow properties. Weber et al. (2012) [43] performed the thermal degradation 

of free fatty acids and animal fat using Na2CO3 and 5 wt% water at 430 ± 20 °C at a pilot plant. 

According to the results obtained Weber et al. (2012) [41], free fatty acids yielded 64-74 wt% OLP 

with acid values ranging from 0.64 to 0.80 mg KOH/g, while animal fat yielded 60-70 wt% with 

acid values ranging from 0.5 to 1.8 mg KOH/g. Gas yields ranged from 25 to 30 wt% and coke 

yields from 4 to 6 wt%. 

As reported above, a series of studies have been carried out on the parameters that influence the 

catalytic cracking process of vegetable oils, as well as their effects on the yield and quality of 

biofuels. However, few studies have investigated the effect of reaction time on the quality of 

organic liquid products. Hew et al. (2010) [15] made improvements in the OLP by catalytic 

cracking to mainly produce gasoline and showed that OLP yield decreases with the reaction time. 

In contrast, gasoline yield increases as reaction time increase from 0.5 to 15 min and decreases 

slightly as reaction time increases to 30 min. In parallel, as the reaction progresses, it is possible to 

convert more OLP into gasoline. Sousa et al. (2018) [44] performed simultaneous deoxygenation, 

cracking, and isomerization reactions of a fatty material with 1.5 g of the Hbeta catalyst. Operating 

conditions of these reactions can be summarized as follows: reaction time (5 to 10 h), temperature 

(300 to 350 °C), initial pressure of H2 (10 bar) and agitation (800 rpm). According to the results 

obtained by Sousa et al. (2018) [44] there was a decrease in hydrocarbon content with increasing 
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reaction time and a significant increase in gas content with increasing reaction time (68% after 7 h 

and 90% after 12 h), resulting in the reduction of liquid hydrocarbons. 

In this context, the main objective of the present study is to investigate the influence of reaction 

time on the quality (physical-chemical properties) of the OLP obtained via the catalytic cracking 

process of crude palm oil (CPO) in a cracking pilot plant with capacity of 143 L in the following 

operating conditions: 20 wt% sodium carbonate (Na2CO3) as catalyst, 450 °C, 1 atm and batch 

mode operation. 

2. MATERIAL AND METHODS 

2.1 Crude palm oil 

Crude palm oil (Elaeis guineensis Jacq.) was provided by Engefar Ltda (Ananindeua-Pará-

Brazil). The crude palm oil (CPO) has been physical-chemically characterized as described in the 

literature [19]. To be used in catalytic cracking experiments, the CPO did not undergo any 

treatment. 

2.2 Catalyst 

The fresh Sodium Carbonate (Na2CO3), commercial soda ASH Light (D50), with a purity of 

98.0 wt% were the catalysts used in this work. Solvay Chemicals International SA (Brussels, 

Belgium) supplied sodium carbonate. 

2.3 Thermal cracking 

For purposes of comparison with the results of catalytic cracking, a thermal cracking experiment 

was carried out on a semi-pilot scale. The methodology for this experiment consisted of weighing 

785 g of CPO. Then, the CPO was introduced in a reactor made of stainless steel with mechanical 

agitation and a capacity of 2 L. The reactor was coupled to the semi-pilot plant, and then it was 

surrounded by an electrical resistance associated with a blanket made of insulating material (glass 

wool), in order to maintain the heating of the reaction system with the least possible loss of heat to 

the environment. The cracking temperature was programmed to 450ºC, with a heating rate of 10 

ºC/min, under constant agitation of 750 rpm and under nitrogen flow from 0.02 ml/min to 0.04 

ml/min. The vapors formed within the reaction system were condensed and collected in a collection 

vessel. Once obtained, the OLP was subjected to a simple filtration process to remove particulate 

matter (catalyst and solid waste). Subsequently, the OLP was subjected to physical-chemical 

analyzes, as described in Section 2.6. 

2.4 Catalytic cracking 

The experimental apparatus used in performing this work was a cracking pilot plant, which 

consists of the following systems: feed, pre-heater, sludge bed reactor, mechanical agitation 

(impeller), GLP burning (heating), OLP condensation, combustion gas exhaust, water recirculation 

and cooling, OLP collection, gas flare, and control unit. The central equipment is the sludge bed 

reactor of carbon stainless steel with a capacity of 143 L. Mota et al. (2014) [19] describe in detail 

the pilot plant used in this study. 

The experimental procedure of the catalytic cracking of crude palm oil to obtain Organic Liquid 

Product was performed as described by da Mota et al. (2014) [19] under the following conditions: 

450°C, 1 atm and 20 wt% of sodium carbonate as the catalyst. Basically, 50 kg of CPO were 

weighed, as well as the catalyst was weighed (20% by weight of CPO). Then, the catalyst was 

introduced into the reactor, while the CPO was stored in the polyethylene tank, and subsequently 

pumped to the sludge bed reactor, flowing through the pre-heater, in order to increase the CPO 
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temperature to 200°C and thus be able to enter the reactor. The sludge bed reactor is heated to 

450°C and the mechanical impeller was set to 150 rpm. When the reaction time of the cracking 

process reached 30 min, the formation of non-condensable gases was observed in the gas flare. As 

the amount of gases generated in the catalytic cracking reaction increases, flowing through the 

condenser, part of this mixture of hydrocarbons called organic liquid product was collected in a 

collection vessel made of stainless steel. After the reaction time of the cracking process reached 60 

min, the production of the OLP was completed, as no more OLP could be collected, meaning that 

all the CPO has been cracked. 

2.5 Evaluation of reaction time 

During the experimental procedure of catalytic cracking, there was a parallel study to evaluate 

the influence of reaction time on the quality of OLP. Thus, the experimental procedure consists in 

collecting samples OLP (Figure 1) at different reaction times (10, 20, 30, 40, 50, and 60 minutes) 

during crude palm oil cracking. Then, the OLP samples were adequately stored in 1000 ml glass 

bottles and amber color. Finally, the OLP containing the mixture of all OLP obtained at different 

reaction times were stored in a polyethylene container of 50 L. 

 
Figure 1: OLP samples at different reaction times. 

2.6 Characterization of the OLP 

OLP has been physical-chemically characterized according to AOCS and ASTM official 

methods for Acid Value (AOCS Cd 3d-63), Saponification Value (AOCS Cd 3-25), Specific 

Gravity at 20 °C (ASTM D854), Refractive Index (AOCS Cc 7-25), Kinematics Viscosity at 40 °C 

(ASTM 446 and ASTM D2515), Flash Point (ASTM D93), and Corrosiveness to Copper (ASTM 

D130). 

3. RESULTS AND DISCUSSION 

3.1 Thermal cracking 

According to Table 1, the OLP obtained from the thermal cracking of the CPO showed high 

values of acidity index and kinematic viscosity. On the other hand, the values of specific mass, 

flash point and corrosivity to copper were within the limits established for Diesel S10, according 

to ANP N° 65 [45]. A more detailed analysis of the results listed in the Table 1 is presented in 

Section 3.2 when comparing them with the results of the catalytic cracking of CPO. 
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Table 1: Physical-chemical properties of the OLP obtained from the thermal cracking of CPO. 

Physical-chemical properties OLP Diesel S10/ANP N° 65 [45] 

Specific gravity at 20 °C (kg/m3) 850 820-880 

Kinematic viscosity at 40 °C (mm2/s) 10.76 2.0–4.5 

Acid value (mg KOH/g) 151.19 0.50 

Saponification value (mg KOH/g) 292.11 - 

Flash point (°C) 38.00 ≥38 

Corrosiveness to Copper. 3h at 50 °C 1A 1A 

3.2. Catalytic Cracking 

In Figures 2, 3, 4, and 5, the reaction time significantly influenced the values of physical-

chemical properties (specific gravity, kinematic viscosity, acid value, saponification value and flash 

point) of the OLP during cracking crude palm oil. Through the operational conditions adopted in 

this study, as the reaction time increased from 0 to 60 min, these physical-chemical properties 

reduced sharply. This fact can be explained by the breakdown of CPO molecules due to prolonged 

exposure to high temperatures and the effect of the catalyst, resulting in products with lower 

molecular weight than CPO. Zhao et al. (2015) [11] investigated the catalytic cracking of carinata 

oil in a continuous flow fixed-bed reactor at 450 °C, with a nominal residence time of 

approximately 60 min. The results show that carinata oil was converted to hydrocarbons with 

molecules smaller than those of crude carinata oil, which resulted in lower density and viscosity of 

the biofuel. Mancio et al. (2016) [7] found that an increase in light hydrocarbon fractions caused a 

decrease in both the specific gravity values at 20 °C and the kinematic viscosity values. 

According to Table 1, and Figures 2, 3, 4, and 5 the OLPs obtained in several times from the 

catalytic cracking of the CPO showed acid value and flash point values higher than that established 

for the Diesel S10. On the other hand, the values of specific gravity, kinematic viscosity and 

corrosivity to copper are within or very close to the lower limits established for Diesel S10, 

according to ANP N °65. 

 
Figure 2: Specific gravity at 20 °C of OLP samples as a function of reaction time. 

Figures 2, 3, 4, and 5 also show that most physical-chemical properties of OLPs significantly 

reduced between 10 and 30 min of cracking, remaining practically constant from 30 min. The 

reaction time is the primary factor to ensure a catalytic process efficiently [43]. If the reaction time 

exceeds the optimum time, the majority of the components present in the liquid products will further 

decompose into other low molecular weight products [15]. It is added to this the fact that the longer 

the reaction time, the higher the process cost [44]. 
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Figure 3: Kinematic viscosity at 40 °C of OLP samples as a function of reaction time. 

 
Figure 4: Acid value and saponification value of OLP samples as a function of reaction time. 

 
Figure 5: Flash point of OLP samples as a function of reaction time. 
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A more detailed analysis of Figure 4 shows that the carboxylic acids (free fatty acids) present 

in the crude palm oil underwent a deoxygenation process in the period of 0 to 10 min of reaction, 

resulting in a significant reduction of the acid value in the first 10 min. Comparing the results 

presented in Figure 4 for catalytic cracking with those in Table 1 for thermal cracking, the reduction 

in the acid value of the OLP is due to the direct and immediate influence of the use of 20 wt% of 

sodium carbonate. In fact, sodium carbonate has a significant effect on the deoxygenation stage of 

the carboxylic acids. causing a significant reduction in the content of oxygenated compounds 

(especially carboxylic acids) or acid phase, consequently reducing the acid value of OLP [7, 38]. 

Between 10 and 40 min of reaction, the values of acid value presented a small variation and did not 

exceed 1.5 mg KOH/g, remaining constant from 40 min. This small variation is due to the 

breakdown of the crude palm oil molecules and subsequently formation of compounds with 

predominance of carboxyls [23, 46-49]. resulting in a slight increase in the OLP acid value. 

In parallel, Figure 4 also shows that in the first 10 min of reaction there was no significant 

change in the values of saponification value. Differently, in the period of 10 to 20 min, there was a 

significant reduction of the saponification value, which did not show significant alterations after 20 

min of cracking. According to Canapi et al. (2005) [48], the saponification value is the number of 

milligrams of potassium hydroxide required to neutralize the free fatty acid and saponify the esters 

in one gram of fat. In other words, the saponification value informs the presence of carboxylic acids 

in the form of free fatty acids and bound fatty acids, i.e., in the form of esters. Therefore, we can 

say that there was a reaction of cracking (primary cracking followed by secondary cracking) of 

palm oil in the period of 10 to 20 min of reaction. promoting a significant reduction of the 

saponification value in that period. According to Vonghia et al. (1995) [49], Katikaneni et al. (1995) 

[50], Idem et al. (1996) [36], Leng et al. (1999) [51], and Taufiqurrahmi & Bhatia (2011) [23], the 

triglyceride molecules undergo a thermal cracking on the surface of the catalyst to form 

hydrocarbons and oxygenated compounds such as fatty acids, ketones, aldehydes and esters, 

characterizing the primary cracking. Thus, these compounds are converted by secondary cracking 

in gaseous products, paraffin, and olefins of long and short chains, CO, CO2, water and alcohols, 

resulting in deoxygenation of oxygenated compounds, particularly, carboxylic acids. 

According to Table 1 and Figure 5, for the OLP from catalytic cracking, the flash point value 

was higher than that established by the ANP Nº 65. This fact is due to the presence of high 

molecular weight compounds, resulting in a value higher flash point for this OLP. The flash point 

indicates the presence of volatile components in the oil and is used to evaluate the overall 

flammability hazard of a material. The lower the flash point, the higher the concentration of light 

hydrocarbons in the material [52]. 

Table 2 shows that there were significant changes in the values of refractive index (RI) and that 

there were no changes in the values of corrosiveness to copper of the OLP during the 60 min of 

catalytic cracking. The lowest refractive index value was reached at 20 minutes of reaction, 

becoming a more physical-chemical property of OLP considered an indication that in the interval 

of 10 to 20 min there was a useful cracking reaction of CPO in molecules smaller when compared 

to the size of the molecules of the feedstock. According to Swern (1964) [53], one of the general 

relations between the refractive index and the composition of an oil-based product, with minor 

exceptions, is that the refractive index increases as the length of the carbon chain increases. From 

the 20 min of reaction, there was a gradual increase of the refractive index. without exceeding the 

value of the refractive index of palm CPO (RI = 1.46). as explained by da Mota et al. (2014) [19], 

indicating that there were at least oligomerization reactions of the products formed during the 

cracking process. According to Ong and Bhatia (2010) [54], light alkenes can undergo 

oligomerization to produce a mixture of alkenes and heavier alkanes. which are arranged under the 

fractions of gasoline, kerosene, and diesel. 

As in the present paper, in previous works such as the work of Mancio et al. (2016) [7] and Mota 

et al. (2014) [19], the catalytic cracking of CPO was investigated, using sodium carbonate as a 

catalyst in a pilot cracking plant. However, the main difference of the present work in relation to 

the work of Mancio et al. (2016) [7] and da Mota et al. (2014) [19] is the study of the influence of 

reaction time on the physical-chemical properties of OLPs, in such a way that, from the present 

study it is possible to answer when the cracking reactions start, as well as the moment in which the 
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physical-chemical properties no longer change as the cracking time progresses. Therefore, the 

results presented are relevant to the scientific community in the area. 

Table 2: Refractive index and corrosiveness to copper of the OLP collected at different times during the 

catalytic cracking experiment of crude palm oil. 

Physical-chemical properties 
Time (Min) 

10 20 30 40 50 60 

Refractive Index 1.46 1.42 1.44 1.44 1.45 1.45 

Corrosiveness to Copper, 3h at 50 °C - 1A 1A 1A 1A 1A 

4. CONCLUSION 

From the present study, which investigated the influence of reaction time (10, 20, 30, 40, 50, 

and 60 min) on the physical-chemical properties of OLP via catalytic cracking of crude palm oil 

with 20 wt% Na2CO3 in a cracking pilot plant (143 L), it was concluded that: 1) reaction time 

significantly influenced the values of physical-chemical properties (specific gravity, kinematic 

viscosity, acid value, saponification value and flash point) of the OLP during cracking crude palm 

oil. As the reaction time increased from 0 to 60 min, these physical-chemical properties reduced 

sharply; 2) thermal catalytic cracking process occurs efficiently in the interval of 10 to 20 min after 

its start, which can be finalized when it reaches 30 minutes of reaction. 3) sodium carbonate was 

essential as a catalyst in the cracking reaction for reducing the acid value of the OLPs obtained in 

several times, as well as for framing the values of specific gravity, kinematic viscosity and 

corrosivity to copper within or very close to the lower limits established for Diesel S10. 
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