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The magnetism of strongly correlated electrons in narrow energy bands is a relevant phenomenon for
several technologically important materials. In this paper, we investigate the conditions for
ferromagnetism of the two-dimensional Hubbard model by the functional-integral method. Using the
static and uniform approximation for the partition function of the system we have determined the
functional free energy for a squared lattice. Thus we have obtained magnetic phase diagrams equivalent
to the Hartree-Fock approximation ones. We have observed the existence of a critical temperature (Tc)
and of a critical onsite Coulombian electrons interaction (Uc) for occurrence of spontaneous
magnetization in the context of our approximations. We have obtained several phase diagrams relating T,
U and n (average number of electrons per site). We graphically verified the dependence of T¢ and Uc
with respect to n, besides the dependence of T¢ with respect to n and U simultaneously. In the half-filled-
band case (n=1) we have obtained an analytical expression for Uc, for some given temperatures. The
determination of T and Ug for the spontaneous magnetization occurrence contributes to show the
functional characteristics of this method. The shape of the curves relative to temperature agrees
qualitatively with that expected for itinerant electrons magnetic systems. We have shown that besides the
existence of a minimum value for the Coulombian interaction energy for occurrence of spontaneous
magnetization, there is a saturation point, that is, a limiting value for the magnetization increase, as
expected.
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1. INTRODUCTION

The development of a consistent theory for magnetism of strongly correlated electron
systems has challenged statistical physics since the 30’s. During all this time there were
important progresses about the microscopic origin, but safe theoretical methods have not been
attained for determining the thermodynamics properties of such systems in consonance with the
extraordinary available experimental results.

The functional integral method was created[1,2] to study strongly correlated electrons
systems at the end of the 50°s, and was largely theoretically developed[3-7] at the 70’s and 80°s.
The method presents innovative aspects concerning electron correlations since it converts
complex interactions in quanta fields which spatially and temporally fluctuates over electrons
which hypothetically do not interact with each other.

In this paper, we use the model introduced by Hubbard in order to deal with electron
correlations in narrow energy bands, which is well known as Hubbard model[8].

Let ¢(r-R,) be the atomic wave function for an electron in an atom at a site R,, and C;,

(C,,) the creation (annihilation) operator for an electron at the site R;, where g =+1, or + and

L, is the spin label. In the “tight binding” approximation the Hamiltonian can be written

. 1 1 .
H=>)Tc.c, +E > Z<|J|F|kl>cigcjg,c,a.cka, (1)
ij,o0 i,j,klo,0
where
* hz
T, = qu(r_Ri){-ZmDZ +v}¢(r—Rj), 2
and
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(ij I%Ikl> =e’ [g(r-R)@ (r-Ry) Xﬁqo(r ~R)Ar -Rpdrdr.  (3)

In (2) V represents the nuclear potential acting over the electrons, Tij is a matrix element
related to two sites (hopping integral). Thus, the first term in (1) is actually the ordinary
Hamiltonian band. Eq. (3) represents the interaction among electrons.

Now we can perform the more important approximation: to disregard all terms in (3)

different from U = <ii ‘l‘ ii>, that is, to consider only interactions at the same site.8 Thus (1)
r

becomes
. 1
H=> Tl +5U D NN, )
i,j,o 2 i,o
which is the well known Hubbard Hamiltonian.

Supposing that there is a magnetic field B applied to the system, the Zeeman term can be
written as

1 1
_Zg'uBBE(nit _nil):_zaagﬂBBnm, (5)

where g is the Landé’s factor and Ly is the Bohr magneton.
Including the Zeeman term (5), the Hamiltonian can be written as

H=H,+H, (6)
where
H, = ZT“”C;,CW, (7)
i,j,0
Hl :Zunirnil > ®)
and
. 1
Ty =T; _05 giuBBJij . ©)

This model describes electron correlation effects in a hypothetically crystalline lattice
regarding the band as a narrow one.

The magnetic behavior of strongly correlated electrons systems is of great interest and thus
several investigations have been performed to determine, for example, spontaneous
magnetization phases. Here we delineate such phases by means of parameters such as
temperature, average number of electrons per site and Coulombian on-site electrons interaction
energy. Performing the static and uniform approximation for the development of the functional-
integral related to the partition function of the system, we have calculated its functional free
energy, which gave rise to all results that we have obtained.

Nowadays there is plenty of technological and scientific research about itinerant magnetism
mostly because of the discovery of new superconductings and semiconducting materials whose
microscopic mechanisms present itinerant electrons[9,10].

This paper is organized as follows. In Sec. 2 the methodology is introduced; in Sec. 3 our
results are presented and discussed. Sec. 4 summarizes the conclusions of the work.

2. METHODOLOGY

2.1 Functional Integral Method

The grand partition function is given by
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Z="Trexp(- fH). (14)

The model we chose here to represent the physical properties of magnetic systems of itinerant

electrons is the Hubbard model for a non-degenerated orbital in which only interactions between

electrons at the same site are admitted. Since we are working in the grand canonical ensemble,
we add a new term related to the chemical potential in (7):

N N

- +

Hy =22 1000850 ~ 2 2 M- (15)
ij o i o

Representing the partition function by the interaction representation

z =Zo<TT><exp{— jdr,@Hl(r)}Ho : (16)

where Z, is the partition function for Hy, Tt is the time ordered, and H;(t) is defined in the
interaction representation by
H,(r) =e"H e, (17)
The functional-integral method formulation for the Hubbard model requires the Coulombian
interaction in terms of squares of one-body charge and spin operators representation. We adopt
the following identity:[7]
1 2 2 2 2
n,n, === (b, =1 b, (s0) ~,(s7 ) ~b, (s -by(s? ). (18)
with
b, +b, +b, +b, =2,

st=1n, -n,). (19.2)

where

SX= %(Si+ +s7). 19.b)
sy =-1/(s;-s7), (19.c)

+

in which S =¢/ ¢, ,and ST =cc . S/ is defined by

s’ =0, +n,). (19.d)

Substituting (18) in (15), the Hubbard Hamiltonian can be rewritten as
H=H,+H, (20.2)

ﬁO = Zz-ri'acitrcia >

]
i,j o

H=-U Zlbo (Sio)z +b, (S,iZ )2 +b, (Six)2 +b, (Siy)ZJ ) (20.¢)

The single body term in (18) was included in ﬁo. The term ﬁo now, as before, represents

with

—

i =Tj — LU + %(bo -1U J5i, ;> (20.b)

and

the Hamiltonian term of a single body and the term ﬁl represents the Hamiltonian term of two
bodies. Thus, an analogy with (16) can be made and one can express the partition function in the
interaction representation defined by H, as[7]

z =Z_0<Trexp{— jdrﬁﬁl(r)}m , Q1)

where Z,, = Tr[exp(—ﬁﬁ 0 )] ,and (...) is the thermal average related to I:O .

In equation (20), for each interval d7 , one can use Hubbard-Stratonovich identity[1,2] which
is valid for any real or complex operator a
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2 - 2
e™® = Idxe K2R ) (22)

The main usage of this identity is to substitute the squared exponential operators by an
integral of linear operators.

The application of the functional-integral method in strongly correlated electrons systems is
based upon this transformation (22).

Hence one can rewrite the grand partition function in this way[7]:

1
Z=2, j D& exp{-EZgggq +kTr1n(1 ~vG°)| (23)
a.q 4
with
V= '(%] Y (b,) 26752, (24)

In (23), Z, is the partition function of the non-interacting system and ¢ are Fourier

transforms for auxiliary fields; q = (q, ®y) [k = (k, ®,)] represent wave vectors and Matsubara
frequencies for bosons [fermions]; N is the site number and Gy is the non-interacting Green
function of an electron.

From calculation of (23) and (24) the system thermodynamic properties can be determined.

2.2 Functional free energy determination by the static and uniform approximation

As written in (18), the term N._N. can be represented by

|

n,n, = _(Sio )2 - (SiZ )2 (25)

The partition function Z in wave vectors and Matsubara frequencies space is7

z=2, [Ndé,de, exp -Zn(fgv.f?q_v v&,¢n )lexp[Trn(i-ve'] o)
qv
where V, defined by (24), obeys the dependence relationV,ge . =V, 5. . -

Doing k-k’= q and n-n’=v, and recalling the definition (24) we have

VU;TI =-2 n-l[lj % Ovsga' + EZVS;U' ' (27)
g N q q

Matsubara's Green function in (26) can be expressed as

Geeor. = G2(k, @, )8, 8, 0O, (28)

k.k'~nn'~o,0"

where
1
Gllk,w)=—-,
ok.w,) B
in which
Eo =& ~OUsB -, (29)
and

d
& = —2tz cos(k,).
i=1

Performing the static and uniform approximation, which consists in the approximation of V
in (26) by V.

Z, exp|Trin(1-VG® )| 0Z, exp[Trin(1-V,G°) . (30)



Debora M. Andrade & Claudio A. Macedo,Scientia Plena 1 (5): 98-107, 2005 102

At this point, all auxiliary fields in the functional integral (fgv,rfqzv) whose moments or

frequencies different from zero are all discarted;
Thus, Vigon =Voo OgeN'=V04.0,,9,,. and

kk'"™~nn'~oo"'

P
Voo :_(ﬂw/\l j (if(;)"'a'foz) . (1)
Calculating the generic matrix element (VOGO), we obtain

0 oo’ — ool olo'
(VOG )kk',nn' - Zzzvkkl,nanklk',nln'

kl nl ol
(VOGO)(IZIZ:nn' = zz zvoadkkldnnldaalegl (kl’wnl)dklk'dnln'dala'
kl nl ol
:VOJGg(kawn)dkk'dnn'dcm' : (32)

Thus, the matrix (V,G’) is diagonal, and so its trace is equal to the summation of all its
elements;

Z(&,&) =2, exp[Trin(1-v,G") = Z, exp{ > i1 -VIGY K, a))]} . (33)

k,n,o

where

0 z

1n{—z(‘(° it } = Y|l -V7GY (K, w,)]
Zo k,n,o
-y ]-dealnl—é?\/o"Gg(k,a)n) - lim v"lj exp(iw,0)dé
k.n,o () 060 5-0 nk,o ’ 0 ia)n _ﬁgka _9\/00

Using the identity [11]:

. exp(iw,0) 1

lim = ;

6~Ozn: iw,-x e'+1
we have

Zo — k,o ° 0 exp(ﬁgko' +WOJ)+1 .

and thus,

hl{M} - Z{—Vo” + 1n[1 +exp(BE,., +V0")J—1n[1 +exp(Be, )]} ~

Zo k,o
As all auxiliary fields related to frequencies or moments different from zero are disregarded,
the productories are simplified in (26) and the partition function (Z) can now be written as

Z = [d&lar expl- m& + £zl &) G4
On the other hand, one can make
Z = [d&dé; expl- AR (&) . (35)

where F({g ,&;) is the functional free energy of the system. Comparing (34) with (35), we
have

BF(ELLED) = (&l + &) —n|Z (&, &) = (36)
& + &) =S -V + Il +exp(Be, +V)| - In[l +exp(Be, N} -1nZ,. (37)

The most relevant terms in Z occur for a minimum value of the functional free energy. It has
been proved3 in the static and uniform approximation, that the resulting phase diagrams are
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equivalent to those corresponding obtained by the well-known Hartree-Fock method. For the
most relevant terms which we mentioned above we have

aF =0 and G_F =0;
& oc;
u— pA
_27E) - (’Tw jl R )I(nﬂ%lj =0; (38)
afo B k.o B+ Bexp(BE,, +\700) ’
— 1 +\7” ﬂ:aJ/ %
oF :%_Z g(ﬂw jé_exp(ﬁé‘ka 0 )a( N) o o
4 B iG|BUN B+ Bexp(Be, +V,") '
From (36) BF(&).¢1) = &) +&7) —ln{Tr exp{—ﬁHo —Zvo"nkg};
(B0
— Tr IBHO V nka:|[ & nkaj}
oF _27%, _ {exp{ Z ; N =0 (40)
% p BTr exp{—,[:’l—|0 —ZVO‘TnkU}
o | )
— Tr CXp|:_ﬂ'|0 - VO nkcr:|( o nnkaJ}
OF _2m&} _ { ;,: ; N _0: @
&, B ’

Brr exp{— B, - Zvognka:|

One can observe, from (40) and (41), that Eg R EOZ can be written as thermal averages of the
occupation number (nyg):

- - ﬂﬂJ
2E =i _z no): 27 =" S5, ).
N k,o

Performing an exchange of Varlables we have

2 _ N7INU
g =——1. (42)

2

= g?oz, that is, the new variable z is proportional to the
magnetization when, keeping fg constant, the functional free energy has a minimum value

At this moment we will perform the calculation of the functional free energy as a function of
&l keeping &, constant and equal to &.. V7 and &,, will be substituted in (37) by the
values given by (31) and (29), respectively. With

h=u,B; BF,=-InZ;, and \7()0=—%(20—n)weobtain

Notice that Zz=n_—n when &;

=22 -0} puun - S{ tnli+exp(gle, ~h-p-U(e-n)2])

+ln[l+exp Ble, +h- ,u+U z+n)/2])] - 1n[1 +exp(Ble. —h - 4]
—1n[1+exp( [Ek +h- ,u])] }+ BF, (43)

Calling S for the argument of the summation above, we have for the functional free energy
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1 F
F(z%l =UZ(22—n2)+U”‘WZSk+WO (44)

k

3. RESULTS AND DISCUSSION

With (43), we plot the functional free energy as a function of z. One observes that, for
constant temperature and constant average number of electrons per site (n), there is a critical
Coulombian interaction energy (Uc). For U larger than Uc, the system presents spontaneous
magnetization and for U lower than Uc it does not. The graphic in figure 1 presents this
behavior. We worked in the half-filled band case (average number of electrons per site equal to
1), and temperature kept at 0,1 t/kg. The graphic shows the behavior of the functional free
energy for three values of U; Uc being equal to 3,78t. Here, the F(z) terms which are
independent of z are all disregarded, in order to have a better comparative analysis. In the same
way we now keep U constant and equal to 6t, and verify the functional free energy dependence
in relation to z for three different temperatures, T¢ being 0.69 t/kg, as shown in figure 2.

In case of paramagnetic behavior, the second derivative of the functional free energy in
relation to z at the point z = 0 must be positive. On the other hand, for ferromagnetic behavior, it
must be negative. Thus we can determine critical parameters for spontaneous magnetization
occurrence making the second derivative of the functional free energy in relation to z at the
point z = 0 equal to zero. The parameters that can be determined are, for example, T for a given
n or Uc for a given n.

From (41), the second derivative of the functional free energy in relation to z at the point z =

0is
O°F _U_pu’ exp(ﬁ[~_€k —,U+U%])_
2

2N 5| {1+ explpls, — e+ Ungf)f |

(45)

-1,50 4

-1,55 -

koT/t = 0.05

-1,60 -

k,T/t=0.69

F(2)

-1,65 -

-1,70 A

k,T/T= 2.00

Figure 1: Functional free energy as a function of the Figure 2: Functional free energy as a function of the
auxiliary field which acts in the electrons spins for auxiliary field which acts in the electrons spins for
three different values of U; temperature kept constant three different values of T; U kept constant (U=6t)
(T=0,1t/kB)
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A notable case of this calculation is the half-filled band (n = 1), because in this situation the
chemical potential (L) is equal to U/2. This fact, well known in the literature, makes Eq (45)
much easier. Thus (45) can be rewritten as

0°F_U_pu’ exp(/3&,)
0z 2 2N &|(1+exp(Be )|
Making the first term equal to zero, one gets UC for the half-filled band case as

N o] enBe)
_ﬁsk ’ here S ;{(1+exp(ﬁé‘k))2}' 0

For temperature equal to 0.1t/kg, we found Uc equal to 3,7859t, which is shown figure 1.

In the same way, we can make (45) equal to zero and determine, by iteractive numerical
calculation, Uc and Tc for each given n, making a phase diagram of the system. Figure 3 shows
Uc as a function of n with the temperature being kept constant and equal to 0.1t/kg. Figure 4
shows T¢ as a function of n, U being kept constant and equal to 6t. In both cases, the regions
denoted by F and P correspond to ferromagnetic and paramagnetic behavior; respectively.

From (39) and taking into account the exchange of variables (42), we have

Uc

n

1 = —_
i+ exlple, +0n; -2 ]| 7"

Thus we plot Z as a function of U and Z as a function of T. In both cases the average
number of electrons per site was kept equal to 1 (half-filled band). Figure 5 shows Z as
function of U; the temperature being kept equal to 0.1 t/kg. It is important to notice the existence
of a critical value for U, that is, it is not allowed the occurence of magnetization for values of U
lower than the critical value. On the other hand, there is a saturation value for U, and for values
of U larger than this value the magnetization does not increase any more. These results are in
perfect agreement with those that would be expected because as it was explained before, Uc in
half-filled band case at 0.1 t/kg, is equal to 3.78, which can be seen in figure 5. Besides that,

since n. +n =1, (n TN ) E 1, one can notice that there is a natural limit for increase in

the magnetization, which justifies the existence of a saturation value for U.

124 0,7 o
]_’L_
10.
94 F 0.6
8.
7_
O 64 =
=) 6 l;m 0,5 E
5_
4_
34 p 0,4 -
2.
1_
Or———T—T T T T T T T T 1 0,3 =+— T T T T T T
00 02 04 06 08 10 12 14 16 18 20 0.7 038 0.9 1.0 11 1.2 1,3
n
n

Figure 3: Uc as a function of n (T = 0.1 t/kg) Figure 4: T¢ as a function of n (U=6t)
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0.2 4
0,14
0,0 4
0,0 T
(; 2' T 6‘ T 1'0 0,0 0,2 0,4 0,6 0,8 1,0
Uit k T/t
Figure 5: Mag as a function of U. There are a critical Figure 6: Mag as a function of T; (U = 6t).

value and a saturation value for U(T = 0.1 t/kB)

Figure 6 shows the graphic of Z as a function of T; U being kept equal to 6t. The figure shows a
critical value for the temperature, and for temperatures larger than the critical temperature the
magnetization is not allowed. These results are in agreement with figure 2 and its shape is well
known for ferromagnetic materials. In both graphics, Z is denoted by mag.

Considering yet the half-filled band case and using (46) one can determine a magnetic phase
diagram relating U and T. It is represented in figure 7. A more generic result is the three-
dimensional phase diagram which is shown in figure 8, relating U, T and n.

2,0

0,5

0,0

Figure 7: Phase diagram relating T and U in Figure 8: Three-dimensional phase diagram relating T, U

the half-filled band case. and n. The volume inside the surface of points corresponds
to ferromagnetic behavior. The other one, outside,
corresponds to paramagnetic behavior
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4. CONCLUSIONS

The most innovative aspect of the functional-integral method is the fact that it transforms, by
means of a mathematical identity, the electronic interactions systems into a system of non-
interacting electrons subjected to space-and time-varying auxiliary fields.

By means of calculation of the functional free energy, here attained with the static and
uniform approximation in the functional-integral, and taking into account the most relevant
terms of the energy, we defined spontaneous magnetization regions in several diagrams of
magnetic phases equivalent to Hartree-Fock results.

The determination of critical values for the Coulombian interaction energy and temperature
for the occurance of spontaneous magnetization contributes to present the functional
caracteristics of this method. The shape of curves related to temperature qualitatively agrees
with those that would be expected. We have shown that besides the existence of a minimum
value for the Coulombian interaction energy for occurrence of spontaneous magnetization, there
is a saturation point, that is, a limiting value for the magnetization increase, as expected.
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