
SCIENTIA PLENA VOL. 1, NUM. 3 2005
www.scientiaplena.org.br

58

Toward a Methodology for the Development of Network
Management Solutions: a Study on Mobility, Autonomy and

Distribution in Agents

Hendrik Teixeira Macedo, Carlos A. G. Ferraz and Geber Lisboa Ramalho
Centro de Informática, Universidade Federal de Pernambuco 50732-970, Recife, PE, Brazil

htm@cin.ufpe.br

(Recebido em 20 de maio de 2005; aceito em 16 de junho de 2005)

Current computer networks require an intricate management activity in order to provide high quality of
service to system users. Usual automation tools follow a client-server approach, which centralizes the
processing. Such management kind lacks flexibility and fault tolerance and generates high network
traffic. A promising alternative approach is based on intelligent agents capable of taking decisions more
autonomously and migrating between devices, allowing a more distributed management. This work
discusses the impact that properties such as mobility, autonomy and distribution in agents have in the
development of management solutions for corporative networks. Considering some metrics (processing
time, CPU consumption, space savings), we have implemented and made an evaluation of different multi-
agent architectures varying the levels of these properties. As case study we used the disk space
management problem in UNIX/NFS machines. A simulator was developed to carry out experiments with
higher control. The results can be used as a guide toward a methodology for construction of management
solutions based on mobile, autonomous and distributed agents.
Keywords: network management, intelligent agents, mobility

1. INTRODUCTION

Agent-based systems have recently gained significant attention in several computer science
fields such as software engineering, human-computer interfaces, and network management, and
the provision of intelligence implies dealing in an adaptive way with unexpected changes in the
environment [1].

Mobile agents [2] introduce a new software and communication architecture, consisting of
executable codes that "travel" between networked machines in order to process data locally.
Unlike the Client-Server (CS) approach [3], there is no need to bring intermediate data across
the network, and thus a significant amount of network bandwidth usage and communication
delay can be avoided. This idea has been popularized in recent years in the area of network
management [4], [5].

The automation of network management activity implies delegating actions that would be
manually accomplished by human managers to computational proceedings. Automation is
required since management activity is usually very repetitive and incessant which may cause
imprecision. In addition, decisions demand time and sub-utilization of human resources.
Interruption in the availability of computational resources or even any inconsistency in the state
of network transactions can cause severe injuries to the organization systems.

Current tools for network management are built according to client-server (CS) approaches
and are strongly characterized by a centralized management. Agents located in devices to be
managed verify the state of devices periodically and send messages to the network management
station (NMS) (machine used by the human manager) which is responsible for monitoring the
devices, identifying problems and turning on proceedings to fix any sudden operation change.
Such centralization overloads the NMS, increases the network traffic and limits the management
flexibility.

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 59

Using more sophisticated agents in network management tools could minimize the effects of
centralization. An agent can, for instance, move its own code and execution state from one
machine to another and take decisions autonomously [7]. Moreover, properties like mobility and
autonomy would help to distribute the management, what is desirable. Unfortunately, solutions
that try to implement such type of agent still suffer from a big problem: the lack of a precise
methodology that indicate when and how to endow agents with mobility and autonomy. Precise
answers to questions like Mobile or static agents? What is the adequate autonomy degree? How
many agents should be used? How different should be the agents? provide the initial subsidies
for setting up an agent-driven methodology for development of network management solutions.
Indeed, these answers could help to define parameters to assess the potential advantages and
disadvantages of each agent’s implementation aspect for a given management problem.

With the study of some agents’ architectures that differ on the utilization levels of the
provided properties, we think it is possible to furnish some items that would aid the design of
network management systems. Through a reflection on three aspects namely, mobility,
autonomy and distribution, we have defined types of agents and organizations of agents by the
combination of those types. Afterward, we have adapted these types and organizations to a
particular case of network management domain, the disk space management in UNIX/NFS
networks. Finally, we have implemented a generic simulator for carrying out the experiments
whose results could be used as guide for the construction of a well-based methodology for the
design of network management systems.

The remainder of this paper is structured as follows. Section 2 exposes traditional approaches
for network management and agent-based ones. In section 3 we discuss some open issues
regarding the implementation of those aspects in agent-based systems. Section 4 shows the steps
we have follow since the definition of some types of agents till the implementation of the
simulator, that is, describes our work methodology. The experiments and its results are shown in
section 5. In Section 6 we draw some conclusions and point out directions for future works.

2. NETWORK MANAGEMENT APPROACHES AND AGENTS

Usually, most of the network management knowledge resides in the human manager. He
knows the management politics, the demands of the systems users and its quality requirements
and it is him that possesses the operational knowledge to transform these demands in actions.
The operational management is made through the monitoring of the status of the system,
analysis of the current situation and triggering of appropriate commands for errors correction or
optimization of the resources usage. Such transformation of management politics in correction
actions usually happens in a reactive manner and exactly in the instant that a mistake requires
the corresponding correction action [7].
Traditional Approach

The most used approach for network management is proposed by IETF (Internet Engineering
Task Forces) and it is based on the Simple Network Management Protocol (SNMP) [9]. The
approach follows the widely used client-server model where a centralized managing entity
(NMS – Network Management Station, operated by the human manager) interacts with SNMP
agents in execution in the devices of the network. Each SNMP agent stores the device’s
information in a local information base called management information base (MIB) [10]. The
NMS acts as client of such agents that control the remote access to its local MIB, requesting
information of the status of the network devices through some SNMP protocol primitives for
exchange of messages. The structure of SNMP agents is very simple and they do not execute
management actions in its local data. The maximum initiative they take is the dispatch of
messages to the NMS when a specific event happens (the sudden change in the status of a
component from “active” to “inactive”, for instance). The NMS is entrusted of executing the
resolved management action by the human manager. Such typical client-server interaction leads
to generation of high network traffic and NMS overload, where all the computation is
accomplished in fact. Furthermore, solutions based on those approaches have poor flexibility
and scalability [8].
Agent-based Approach

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 60

Traditional approaches as the mentioned so far use a very simplistic concept of agents that
function basically as a sensor. Possibly, endowing agents with characteristics such as mobility,
reasoning, coordination ability, etc., they could give a larger contribution for a distributed,
flexible and less painful management for the human manager.

A mobile agent (MA - mobile agent) is a computational process which can bring its own
execution code, the data it processes and even the execution status from a device to another.
Client-server models assumes that the important thing is to migrate the data to where the
program which will process them is located, while those based on mobile agents consider that
migrating the program to the place where the data are located is the best approach. As a result,
interactions between clients and servers are not any more done remotely; they are done locally,
reducing the network traffic, increasing the systems’ robustness, and providing a larger
flexibility, once a certain service is not statically tied up to a specific machine.

A reasoning agent has been classically implemented through deductive inference (or
inductive [11]) mechanisms that allow the agent to choose the most appropriate actions starting
from its perceptions, its goals and its knowledge [7]. Such ability of reasoning logically is a
important characteristic in order to provide a larger autonomy degree to the agent. Indeed, the
autonomy can improve the benefits of agents' mobility in the network management [5]. For
example, a mobile agent can make dynamic decisions such as finding the next destination,
optimizing the travel plan, and detecting link failures, as the agent travels around the network.

In order to follow the decentralization tendency that is highly recommended nowadays to the
automation of network management systems [8], it is necessary thinking not just in a lonely
agent, but in a group of them, called multiagents systems [10]. When the problem requires the
action of physically distributed entities, that is the case of the network management, ones should
opt for a multiagent solution. In order to agents be able to co-act, good mechanisms of group
coordination are made necessary.

Those three characteristics described above have been studied, in the academic domain, to be
used in the modeling, development and/or usage of more sophisticated agents in the network
management field [13], [14], [15]. However, despite of the great potential of the agents, the
current researches seem not being collaborating much. Little profit has been taken from the
couple mobility-autonomy, for example. Besides, the solutions are still based on the centralized
control and there is not yet an accurate methodology for the design of agent-based network
management solutions.

It seems to be clear that there is not a guide for a coherent usage of characteristics such as
mobility and autonomy in the development of network management solutions. The way in
which researches are being driven, does not really contribute to the development of a technique
because they are not coordinated, they don't investigate the circumstances of the usage of the
agents' characteristics and they contemplate only some specific network management cases
[16].

3. OPEN ISSUES

We thought the discussions on the development of less centralized approaches, where
autonomous entities are responsible for the management of such a resource, should be moved
toward a new context, where the network should be faced as one of those resources to be
explored and managed. That new vision implies a change of human manager attitude and the
increase of the complexity of the automation tool and also upsets standardized management
model, where a central NMS is of speaking specific network protocols and interacts with the
managed resources. Why not having a distributed management system where there is not a
central station and where the intelligence simply emanates from a set of intelligent agents that
collaborate to solve a specific problem? If on one side, the distribution of the management of
the resources decreases the need for human intervention, for other, it increases the need for
organization of intelligent agents. Hence, it is important to make an evaluation of the inclusion
of agents' properties like mobility and autonomy, for instance, in such a way they can be used in
a consistent manner.

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 61

In a previous work [4] we have implemented three different architectures that combine these
characteristics and we have also made some performance measurements to evaluate the impact
of these parameters, primarily, regarding the network traffic. We have noticed that although
such architectures have been potential solutions for network management, the results has shown
that much more different architectures are necessary to provide convincing results. The
importance of a design methodology becomes clear. There are some open issues around the use
of Artificial Intelligence (AI) that need to be answered as a first step toward such methodology:
Should it be used static or mobile agents? Which the ideal degree of mobility? How complex
should the agent's code be? Which is the ideal degree of autonomy? Which the ideal number of
agents in the solution?

Although the well-known potential benefits from the use of mobile agents such as space
savings, decrease of network traffic, robustness and fault tolerance and others [5], its
employment is circumstantial and depends on the kind and the level of the network management
activity. The big challenger is to discover which these circumstances are. When there is not a
strongly need of frequent management activities, maybe the use of mobility do not compensate
the cost of supplying the required mobility middleware. When there is a great variation on the
status of managed devices, where simple problems occur regularly, the use of mobility may be
more suitable. However, how to deal with an unstable network? What should be done when
some devices need to be managed more often?

By the way, autonomy can augment the benefits of mobility by reducing the need of human
expertise during installation and operation of the management solution. On the other hand, great
autonomy degree requires complex agent implementation, with more coded rules. So, would it
be interesting to create agents with different specialization and functionality? In situations
where activities are quite complex and can be split into sub-activities, the use of specialized
agents could be interesting. To be precise, activities as perception, decision and execution can
be imputed to individual agents, combined for the whole proposes.

In a management domain where variations on the status of devices are continuous, it may be
interesting the use of a larger number of agents. The agents can be spread in the network and
become in charge of a sub-network. On the other hand, a greater number of agents leads to a
larger need for coordination activity. The number of agents used a solution can also be directly
related with its autonomy. Agents with restricted power, and more specialized, need to
cooperate with other agents in order to solve problems: and that is another coordination issue.

4. METHODOLOGY

The exposed issues above turn evident the hardness of projecting and developing agent
systems for truly distributed network management solutions. In order to contribute to the area,
we have followed a work methodology which consists of four steps, basically: definition of
some types of agents and organizations of agents, establishment of comparisons criteria, a case
study for adapting the types of agents and organizations, and the construction of a simulator to
carry out the experiments.

4.1. Types of Agents

The previous discussion has shown that there are at least two properties to be taken into
account when developing agent-based network management tools:

- Mobility: an agent may be mobile, static local or static connected. Static local means that

the agent is fixed in a device and its actions are strictly local. Static connected means that the
agent is fixed in a device but may be connected to other devices through remote calls;

- Autonomy: an agent may holds the whole management knowledge or be specialized

(perception, decision or execution, for example).

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 62

These properties may be represented by two sets (“Mobility” and “Autonomy”) and the
resulting elements of the Cartesian product are the types of agents we have defined and named
(Fig. 1).

Mobility

Autonomy

Mobile

Static
local

Static
connected

complete perception decision execution

Entire Sentinel Decide Doit

MobEntire MobSentinel MobDecide MobDoit

FarEntire FarSentinel FarDecide FarDoit

Fig. 1. Types of agents from properties

The Entire type defines static agents that hold the whole management knowledge and act
only on the device it is located. Sentinel, Decide and Doit types define specialized static agents
in charge of monitoring the status of managed device, defining the most convenient actions to
solve the problem, and executing those actions, respectively.

Mob types define agents with similar functionality of each type described before, but with the
ability of moving between devices. Their actions are also locally.

The Far types also define static with similar functionality of each type described before, but
although they are static, they do not act just locally. They can work on others devices through
remote calls.

Besides these 12 types of agents, we may also have associated types. Depend on the
management problem domain, it could be more suitable having a static agent that amasses both
functionality of deciding and executing, for example. That agent would belongs to the
associated type DecideDoit.
Organizations of Agents

A multi-agent architecture can be obtained by combining several of those types of agents.
Because the number of combinations may be very large, we have introduced the concept of
organizations of agents to gather kindred types of agents. An organization of agents works as an
intermediary level and helper to the definition of a multiagent architecture.

To be concerned about the number of possibilities there are, suppose the example of a
network with just three manageable devices. The Fig. 2 illustrates 6 possible architectures.

From left to right and from top to bottom, the first is composed by two agents of the type
MobEntire (ME), the second is composed by an agent of the type MobSentinel (MS) and one of
the associated type MobDecideMobDoit (MDMD), the third is composed by an agent of the
type FarSentinel (FS) and one of the associated type FarDecideFarDoit (FDFD), respectively,
the fourth composed by three agents of the type Entire (E), the fifth composed by an agent of
the type MobSentinel (MS) and two of the associated type MobDecideMobDoit (MDMD), and
the last one composed by three agents of the type Sentinel (S) and one of the associated type
MobDecideMobDoit (MDMD), respectively.

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 63

ME

ME

FS

FDFD

E

E

S

S

MDMD

MS

E

MSMDMD

MDMD
S

MDMD

ME

ME

FS

FDFD

E

E

S

S

MDMD

MS

E

MSMDMD

MDMD
S

MDMD

Fig. 2. Different multiagent architecture compositions

This example shows the hard work of deciding the more appropriated types of agents for a
specific network management solution and also the number of agents to be used. Since it is not
possible to treat all the possibilities, we have made an evaluation of each type and identified the
most rational compositions (Table 1).

Table 1. Organizations of Agents
Organizations of agents Types of Agents
LocalMonoComplete Entire
MobMonoComplete MobEntire
ConectMonoComplete ConectEntire
LocalThreeSpec Sentinel, Decide, Doit
MobThreeSpec MobSentinel, MobDecide, MobDoit
ConectThreeSpec FarSentinel, FarDecide, FarDoit
MobConectMixed1 FarSentinel, MobDecideMobDoit
MobConectMixed2 MobSentinel, FarDecideFarDoit
MobLocalMixed Sentinel, MobDecideMobDoit
MobTwoType MobSentinel, MobDecideMobDoit

4.2. Case Study: Disk Space Management in UNIX/NFS Networks

We have chosen a particular problem of the Accounting Management OSI Functional Area
[15] to employ the ideas exposed prior. The disk space management is a very important activity
for the good operation of a corporative network since several applications and network services,
such as logging and e-mail services, have high dependence on the free space in disk.

The Network File System (NFS) is a transparent environment for sharing and distributing
files in UNIX networks. It implements a client-server environment, which extends the common
access functionalities to files in UNIX so that machines can share portions of their local
filesystem. This contributes to the distribution of storage resources and to remote files sharing.

Each storage device (local or imported from other machine in the network) used to compose
the virtual directories tree of the machine is called partition .

A common problem in such kind of environment is the over utilization of an individual
partition. Specifically, the number of files in a partition can grow until take the whole available
space in disk. The seriousness of such event depends on the type of the partition. The lack of
control in a partition of an e-mail area (“/var/mail"), for instance, can lead to the unavailability
of such service, making electronic mail messages be rejected or discarded.

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 64

4.2.1. Activity Modeling

The management automation for this activity consists in (1) provideg periodicals checks on
the utilization percentage of a partition, (2) determine if it is super-used (it has surpassed a
threshold previously specified by the network manager), (3) determine appropriate correction
actions, and (4) apply them. Usually, these actions consist of several different operations on the
existing files. One may seek for very big or useless files and remove them; files may be
compacted to save space, may be moved to another partition even it is a remote one. The choice
should be taken according to some criteria as files lifetime, duplication of files, files types, to
point up some. For this reason, a management tool for the disk space problem should include the
following operations:

1- Partition Classification (PC): This operation identifies all the partitions in a machine’s

hard disk and classifies them according to some predefined partitions types (ex. “/”, ”/usr”,
“/var”, etc.).

Pseudo-code:

getFilesystems() {
List existing partitions in machine with "/bin/df -kl"
Keep the list in memory
For ∀ lines of the list do:

Identify the size,
the partition’s utilization,
the partition’s name

If name = "/": partition classified as ROOT type
If name = "/usr": partition classified as USR type
...

}

2- Utilization Checking (UC): For each partition’s type there is a correspondent utilization
threshold. We have provided a text file with these limits.

Pseudo-code:

checkUtil() {
For ∀ classified partition ρ do:

Read the thresholds’ file ϕ
Seek ϕ for the threshold for ρ
If the utilization % of ρ ≥ threshold:

ρ is super-used
}

3- File Classification (FC): This operation consists of a depth-limited search [7] on the
partition’s sub-directories tree. As the files (their name consist of the whole path) are being
identified they are classified according to the directory it is located and/or information obtained
with the UNIX system call “/bin/file <file_name>”.

Pseudo-code:

classifyFiles() {
For ∀ super-used partition ρ do:

ν � accumulate(ρ)
While ν is not empty:

l � first line of the last position of ν
If l is last line of the list

Remove last position of ν
If ν is empty

end-of-while
If l begins by the letter ‘d’:

It is a directory
accumulate(l)

else if l begins by the character ‘-’:

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 65

It is a file
Get file information with "/bin/file"
Classify file

}
accumulate(path p) {

List the files|directories of p with "/bin/ls -lAc"
Store the list in a vector in memory

}

4- Action Decision (AD): This operation defines, according to some rules, the actions that
should be taken for each classified file in order to solve the over-utilization problem. For
example, it could define that a temporary file, which has not been accessed for a week, must be
removed, or a big image file must be compressed. Those production rules have been described
in a similar format to the First Order Logic (FOL) [7]. All the rules have been codified using the
JEOPS inference engine’s format [17].

Examples of some Production Rules:

∀ p,f Partition(p) Λ File(f) Λ (Type(f) = CORE) → Remove(f)
∀ p,f Partition(p) Λ File(f) Λ (LifeTime(f) > 5) Λ

(Type(p) = TMP) → Remove(f)
∀ p,f Partition(p) Λ File(f) Λ (Size(f) > 5000000) Λ

(Type(f) = MAIL) Λ (Type(p) = EXPORT)→ Compact(f)

Pseudo-code:

reasoning() {
Insert the super-used partition in Knowledge Base (KB)
Insert ∀ classified files of that partition in KB
Run KB

}

5- Action Execution (AE): This operation is responsible for executing the inferred actions.
This is done with the aid of UNIX system calls.

Pseudo-code:

executeActions() {
Removing: “rm <file_name>”
Compacting: “gzip <file_name>”
Compacting and Recreate: “gzip <file_name>” and

Recreate it empty
Moving: export partition with available space in purposed

machine, mount remote partition in the former
machine and move the file to the remote partition

}

4.2.2. Adapting Types of Agents

In section 4.1 we have defined 12 types of agents. They were adapted to the case study.
Depending on the functionality, the agents are in charge of executing some of the operations
described so far. Fig. 3 shows the architecture of the MobEntire type.

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 66

MobEntire

sensors partitions

effectors

PCUC

FC

goal:
available
space in

partitions

KB

AE

SU

yes

no

Time (t)

N
e
t
w
o
r
k
e
d

m
a
c
h
i
n
e
s

next
machine

migrate

AD

d
i
s
k

MobEntire

sensors partitions

effectors

PCUC

FC

goal:
available
space in

partitions

KB

AE

SU

yes

no

Time (t)

N
e
t
w
o
r
k
e
d

m
a
c
h
i
n
e
s

next
machine

migrate

AD

MobEntire

sensors partitions

effectors

PCUC

FC

goal:
available
space in

partitions

KB

AE

SU

yes

no

Time (t)

N
e
t
w
o
r
k
e
d

m
a
c
h
i
n
e
s

next
machine

migrate

AD

d
i
s
k

Fig. 3. The architecture of a MobEntire agent

4.3. The AgsAge Simulator

In order to better accomplish a larger number of experiments and in a more controlled way
we have developed a management simulator. The great hardness to obtain the exclusiveness of a
network for actual experiments and the performance variations that a network usually has could
commit the results. The simulator allows variation on the number of network devices and
composition of different network sceneries. This is desirable since we need to test the
performance of different multi-agent architectures and the related cost of each operation type in
the network: remote messages and local ones, code migration, multicast of messages, CPU
consumption, processing time, disk space consumption, etc.

4.3.1. Organization and Operation.

AgsAge [18] works independently of the network management application. In other words, it
has a modular architecture which enables the specification of a whole simulation environment
for any management activity. Such modularity is achieved by means of an API (Application
Program Interface) that allows the designer to independently specify organizations of agents,
types of agents, type of devices and the management domain.

In our case, we have used the to implement the problem of disk space management. The
simulator operation for the case study consists of three main steps:

1- Addition of machines. One must specify the type of each added machine. We have

provided five possible types according to the level of partitions usage;

2- Selection of the organizations of agents. One may use one of the five organizations of

agents provided (LocalMonoComplete, MobMonoComplete, ConectMonoComplete,
MobLocalMixed, MobTwoType);

3- The distribution of the agents. Agents (belonging to the selected organization) should be

distributed throughout the network machines.

When the simulation begins, it will be fired several threads that will execute, one for each

existing agent. In the case of the MobLocalMixed organization, for instance, Sentinel agents
remain monitoring the usage status of the partitions of machines they are placed. When they

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 67

detect over-utilization problem in any partition, it requires a MobDecideMobDoit agent action,
doing a message multicast to all other agents of this type that are distributed in the network. Fig.
4 illustrates a simulation process.

Fig. 4. Simulation with several Sentinels and two MobDecideMobDoit agents

4.3.2. Calibration

To calibrate the simulator we must measure the impact (in terms of processing time, CPU
consumption, etc.) that each of the operations (section 4.2) causes in a network and to embed
the simulator code with the gotten values. This way it is possible to evaluate the performance of
the simulated multi-agent architectures. Those operations have been implemented in three
different ways: (1) for local execution, (2) for remote execution through UNIX Remote Shell
(RSH) and (3) for remote execution through remote objects. Codes for the measurement of
agents’ migration cost and for the cost of agents’ inter-communication have been also
implemented. We have chosen the distribution’s platform Borland’s Visibroker (CORBA [19])
with IDL compiler for JAVA to implement the remote objects. The mobility middleware used
was the ObjectSpace Voyager [20]. Each operation was executed 100 times.

5. EXPERIMENTS AND RESULTS

We have accomplished some experiments with five different multi-agent organizations
(LocalMonoComplete, MobMonoComplete, ConnectMonoComplete, MobLocalMixed ,
MobTwoType), varying the number of agents and the scenario (i.e., different number of
machines with different levels of disk usage. In all cases, we have fixed a limit time for the
simulation. We use the term “visit” to indicate that the sub-tasks partition classification ,
utilization checking and files classification of a machine have been done, either by mobile or
static agents.

We have firstly simulated a medium size network (30 machines) without over-utilization
problems to verify how well the machines have been visited. During the given experiment time
span, the organization ConnectMonoComplete (either in RSH or Remote Object
implementation) have visited only 50% of machines. This undesirable behavior is due to the fact
that FarEntire (agents that solves the whole problem remotely) is probably an inappropriate
model. On the other hand, the organizations LocalMonoComplete and MobLocalMixed have
visited all machines more times than necessary, since the Sentinel agents perform “visits”
continuously (Fig. 5). The other two organizations have done a reasonable number of visits. Fig.
5 also shows that the MobTwoSpec organization with only one MobSentinel and the
MobMonoComplete organization with only one MobEntire have had an equivalent behavior.
But three MobSentinel agents have made more visits than three MobEntire agents. This can be

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 68

explained by the fact that the migration time of a MobSentinel agent is smaller than the
MobEntire one, since the former has a smaller code.

4
7

10

4
12

1080

453

0 10 20 30 40 50

A
rq

ui
te

tu
ra

s

Número de avaliações por máquina

LocalMonoComplete MobMonoComplete (1 MobEntire)
MobMonoComplete (2 MobEntire) MobMonoComplete (3 MobEntire)
MobLocalMixed (1 MobDecideMobDoit) MobTw oSpec (1 MobSentinel, 1 MobDecideMobDoiit)
MobTw oSpec (3 MobSentinel, 1 MobDecideMobDoiit)

A
rc

hi
te

ct
ur

es

Evaluations (per machine)Visits (per machine)

4
7

10

4
12

1080

453

0 10 20 30 40 50

A
rq

ui
te

tu
ra

s

Número de avaliações por máquina

LocalMonoComplete MobMonoComplete (1 MobEntire)
MobMonoComplete (2 MobEntire) MobMonoComplete (3 MobEntire)
MobLocalMixed (1 MobDecideMobDoit) MobTw oSpec (1 MobSentinel, 1 MobDecideMobDoiit)
MobTw oSpec (3 MobSentinel, 1 MobDecideMobDoiit)

A
rc

hi
te

ct
ur

es

Evaluations (per machine)Visits (per machine)
LocalMonoComplete,
MobTwoSpec,
MobLocalMixed,
MobMonoComplete (3 MobEntire),
MobMonoComplete (2 MobEntire),
MobMonoComplete (1 MobEntire),
LocalMonoComplete

Fig. 5 - Number of visits in a 30-machine network without of super-utilization problems

In networks with low rates of over-utilization problems, organizations that implement static
agents have obviously high visit rate per machine, consuming too much cpu. On the other hand,
organizations containing mobile agents face the problem of high number of unnecessary
migrations in network. Fig. 6 shows the results of an experiment in a 15-machine network,
where 4 machines had super utilization problems. It is important to notice that increasing the
number of agents MobEntire in the organization MobMonoComplete the processing time and
management latency decrease, as it was expected. However, in this case, the number of
migrations in the network increases in a higher proportion. This means that there was a great
growth in the number of unnecessary visits (machines without problem).

Arquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 34 0,38 100,00
ConectMonoCompleteOR 300 25,00
ConectMonoCompleteRSH 300 25,00
MobMonoComplete (1 MobEntire) 132 52,35 100,00 14
MobMonoComplete (2 MobEntire) 75 23,55 100,00 38
MobLocalMixed (1 MobDecideMobDoit) 89 47,05 100,00 4 915
MobLocalMixed (2 MobDecideMobDoit) 72 22,08 100,00 4 430
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 89 47,70 100,00 4 40 18
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 56 32,10 100,00 4 64 72
MobTwoSpec (2 MobDecideMobDoit, 4 MobSentinel) 58 32,10 100,00 4 207 732
MobTwoSpec (3 MobDecideMobDoit, 2 MobSentinel) 57 29,98 100,00 4 76 6
MobTwoSpec (4 MobDecideMobDoit, 2 MobSentinel) 60 30,98 100,00 4 87 8

architectures time latency suc(%) migKB mig msg

Fig. 6 - Results for a 15-machine network where 4 machines had super-utilization problems. Time
= necessary processing time for finishing management, latency = management latency average,
suc = percentage of machines that has been visited, migKB = migrations number of KB-agents,
mig = migrations number of agents, msg = number of messages between agents

In organizations such as MobLocalMixed, the action of Sentinels agents located in each
machine optimizes the management since they are responsible for the sub-task files
classification (the most time costly operation) while MobDecideMobDoit agents are working on
actually solving problems. In the organizations with MobEntire agents as the
MobMonoComplete one, such agent has to process all the operations; there is no previous
processing. However, the communication overhead is very larger in that then it is in this one: as
soon as the Sentinels accomplish the sub-task files classification, they begin to make multicast
messages for MobDecideMobDoit agents until they are heard. Increasing the number of agents
MobDecideMobDoit in the organization it is clear the reduction in the number of messages, due
to the larger availability of such agents.

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 69

The last four combinations of the MobTwoSpec organization have presented performance
gains in terms of processing time and management latency, related to the first composition, but
they had had similar performance results between themselves. A bigger number of MobSentinel
agents in relation to the number of MobDecideMobDoit agents in the organization causes a great
growth in the number of messages, since there is not enough agents of such type to attend the
calls in time. We may notice also that if the number of MobSentinel agents is very big in
relation to the number of machines with super utilization problems, there will be a high number
of unnecessary migrations.

We have noticed the influence of the number of agents in the performance of an organization
when we increases the number of MobEntire agents in a MobMonoComplete organization, for
example. For the specific case of networks with a great number of machines with super-used
partitions, 4 MobEntire agents have solved the problem of all machines in 65,6% of the limiting
time while 2 of those agents have solved none. It was observed, however, that there had had
much more migrations in the first case than in the last one (Fig. 7).

As example of the influence of the mobility, the autonomy degree and the properties
correlation, the results obtained with the MobTwoSpec organizations have shown that an
increase in the number of MobSentinel agents causes a great increase in the number of
migrations and in the number of multicast of messages unless there is an increase in the number
of MobDecideMobDoit agents, likewise. A balanced number of MobSentinel and
MobDecideMobDoit agents have seemed to be quite functional. We have also noticed that an
increase in the number of MobDecideMobDoit agents optimizes the processing time of the
activity despite of the large communication’s overhead, while a larger number of MobSentinel
agents decreases the average management latency.

Arquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 82 0,41 100,00
ConectMonoCompleteOR 500 4,35
ConectMonoCompleteRSH 500 4,35
MobMonoComplete (1 MobEntire) 500 237,60 47,80 11
MobMonoComplete (2 MobEntire) 500 229,58 82,60 28
MobMonoComplete (4 MobEntire) 328 132,50 100,00 119
MobLocalMixed (2 MobDecideMobDoit) 488 251,08 100,00 23 102764
MobLocalMixed (4 MobDecideMobDoit) 301 163,37 100,00 23 98501
MobLocalMixed (8 MobDecideMobDoit) 234 144,96 100,00 23 54677
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 500 215,61 73,90 18 18 2792
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 342 150,00 100,00 23 138 5044
MobTwoSpec (2 MobDecideMobDoit, 5 MobSentinel) 280 132,96 100,00 23 464 15362
MobTwoSpec (5 MobDecideMobDoit, 5 MobSentinel) 146 70,70 100,00 23 244 7416
MobTwoSpec (5 MobDecideMobDoit, 2 MobSentinel) 266 166,88 100,00 23 85 1720

architectures time latency suc(%) migKB mig msgArquitetura tempo latência êxito (%) migKB mig mgs
LocalMonoComplete 82 0,41 100,00
ConectMonoCompleteOR 500 4,35
ConectMonoCompleteRSH 500 4,35
MobMonoComplete (1 MobEntire) 500 237,60 47,80 11
MobMonoComplete (2 MobEntire) 500 229,58 82,60 28
MobMonoComplete (4 MobEntire) 328 132,50 100,00 119
MobLocalMixed (2 MobDecideMobDoit) 488 251,08 100,00 23 102764
MobLocalMixed (4 MobDecideMobDoit) 301 163,37 100,00 23 98501
MobLocalMixed (8 MobDecideMobDoit) 234 144,96 100,00 23 54677
MobTwoSpec (1 MobDecideMobDoit, 1 MobSentinel) 500 215,61 73,90 18 18 2792
MobTwoSpec (2 MobDecideMobDoit, 2 MobSentinel) 342 150,00 100,00 23 138 5044
MobTwoSpec (2 MobDecideMobDoit, 5 MobSentinel) 280 132,96 100,00 23 464 15362
MobTwoSpec (5 MobDecideMobDoit, 5 MobSentinel) 146 70,70 100,00 23 244 7416
MobTwoSpec (5 MobDecideMobDoit, 2 MobSentinel) 266 166,88 100,00 23 85 1720

architectures time latency suc(%) migKB mig msg

Fig. 7 - Results for a 23-machine network. All machines have super-utilization problems

The MobMonoComplete organization with 1 and 2 MobEntire agents have solved the
problem of 47.8% and 82.6% of machines in network in the limit time, respectively. Folding the
number of MobEntire agents to 4, the total processing time for resolution of the problem of all
the 23 machines was 328 seconds. It can be noticed that the number of migrations have grown
sufficiently in relation to the two previous situations. This is resulted in the saturation effect in
the management. It means that how bigger the number of agents, more quickly the total
management in the network is made, but when there are not any more machines to be managed,
the free agents will migrate more quickly between machines.

Comparing the performance results of three different MobLocalMixed organizations (with 2,
4 and 8 MobDecideMobDoit agents) we could see the relationship between the number of
agents, the mobility and the autonomy. We have noticed that there was an improvement in the
processing time and in the average management latency when we increase the number of
MobDecideMobDoit agents. However, the improvement rate seems to tend for stabilization with
the increase in the number of these agents (see graphs of Fig. 8).

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 70

488

301
234

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9
Number of MobDecideMobDoit agents

Pr
oc

es
si

ng
 T

im
e 251,08

163,37 144,96

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

Number of MobDecideMobDoit agents

A
ve

ra
ge

 M
an

ag
em

en
t L

at
en

cy

Fig. 8 - Stabilization trend for both processing time and average management latency with the increase of

the number of MobDecideMobDoit agents.

The experiments results show that the usage of mobility in agents should be motivated,
depending on the provided autonomy degree. Mobile agents with total autonomy had a good
processing time, but had average management latency larger than an organization with
specialized agents (static or mobile ones) for monitoring, decision and execution. More details
in [18].

6. CONCLUSIONS

In this work, we have made a critical and original analysis of some agent’s properties such as
mobility, autonomy and distribution for the network management field. Unfortunately, there are
little solutions nowadays that try to implement agents of such type and there is not a
methodology for that.

Thus, in order to provide some guides toward the development of such methodology we have
follow some steps till the accomplishment of the experiments.

From the study of some issues concerning the usage of those properties, we have defined
types of agents and organizations of agents based on combinations of these types. Next, we
adapted them to a particular case study: the disk space management in UNIX/NFS networks.

We have also developed a generic simulator (an arduous programming work with ~ 10200
lines of Java code plus CORBA and Voyager programming) for carrying out the experiments,
which can be useful for the multiagent community's studies.

We are already working toward the adaptation of the types of agents and the organization of
agents to accomplish new experiments in the simulator for another management domain.

With the results we have got, we intend to build a real multiagent-based system for disk space
management based on the concept of complete distribution of the management activity.

7. AKNOWLEDGEMENTS

We are thankful to CNPq and CAPES for the financial support.

1. CHESS, D. et al. Itinerant Agents for Mobile Computing. IBM Research Report RC 20010, IBM
Research Division, 1995.

2. HARISSON, C. G.; CHESS, D. M.; KERSHENBAUM, A. Mobile agents: Are they a good idea?
Technical report, IBM Research Divis ion, 1996.

3. BERSON, A. Client-Server Architecture. 2nd edition. McGraw-Hill, 1996.
4. ANDRADE, R. de C.; MACEDO, H. T.; RAMALHO, G. L.; FERRAZ, C. A. G.: Distributed

Mobile Autonomous Agents in Network Management. In Proceedings of International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA'2001). Las Vegas, USA,
2001.

5. BIESZCZAD, A.; PAGUREK, B.; WHITE, T. Mobile Agents for Network Management. In: IEEE
Communications Surveys, 1998.

H. T. Macedo,C. A. G. Ferraz , G. L. Ramalho, Scientia Plena 1 (3): 58-71, 2005 71

6. PULIAFITO, A.; TOMARCHIO, O. Advanced Network Management Functionalities through the
use of Mobile Software Agents. In: 3rd International Workshop on Intelligent Agents for
Telecommunication Applications (IATA'99). Stockholm, Sweden, 1999.

7. RUSSEL, S.; NORVIG, P . Artificial Intelligence: A Modern Approach. Pretice Hall, 1995.
8. BALDI, M.; GAI, S.; PICCO, G. P. Exploiting Code Mobility in Decentralized and Flexible

Network Management. In: Proceedings of Mobile Agents, 1997.
9. CASE, J., FEDOR, M.; SCHOFFSTALL, M. L.; DAVIN, C. Simple Network Management

Protocol (SNMP). RFC 1157, 1990.
10. MCCLOGHRIE, K.; ROSE, M. T. Management Information Base for Network Management of

TCP/IP based internets, MIB-II. In: Internet Request for Comments Series, RFC 1213, 1991.
11. MITCHELL, T. Machine learning. McGraw-Hill, 1997.
12. LESSER, V. R. Cooperative Multiagent Systems: A Personal View of the State of the Art. IEEE

Transactions on Knowledge and Data Engineering, Vol. 11, No. 1, 1999.
13. BIESZCZAD, A.; PAGUREK, B. Network Management Application-Oriented Taxonomy of Mobile

Code. In: IEEE/IFIP Network Operations and Management Symposium (NOMS'98). New Orleans,
Louisiana, 1998.

14. MINAR, N.; KRAMER, K. H.; MAES, P. Cooperating Mobile Agents for Mapping Networks. In :
Proceedings of the First Hungarian National Conference on Agent Based Computation, 1999.

15. PULIAFITO, A.; TOMARCHIO, O. Advanced Network Management Functionalities through the
use of Mobile Software Agents. In: 3rd International Workshop on Intelligent Agents for
Telecommunication Applications (IATA'99). Stockholm, Sweden, 1999.

16. CHEIKHROUHOU, M. M.; CONTI, P.; LABETOULLE, J. Intelligent Agents in Network
Management a State-of-the-Art. Network and Information System Journal. Vo lume 1, no. 1, 9-38,
1998.

17. FIGUEIRA, C.; RAMALHO, G. Jeops – the java Embedded Object Production System . In: M.
Monard e J. S ichman (eds). Advances in Artificial Intelligence. Lecture Notes on Artific ia l
Intelligence Series, vol. 1952, pp 52-61. London: Springer-Verlag, 2000.

18. MACEDO, H. T. Mobility, Autonomy and Distribution in Agents for the Management of Corporate
Systems. Master’s Thesis, CIn/UFPE, 2001.

19. OBJECT MANAGEMENT GROUP. The Common Object Request Broker: Architecture and
Specification (CORBA), Framingham, MA, 1998.

20. OBJECT SPACE VOYAGER. http://www.objectspace.com/products/voyager/

