Biological dosimetry for mixed gamma-neutron field

J. O. C. Brandão1,2; P. L. G. Souza1; M. S. Calixto3; J. A. L. Santos1,2; N. Santos3; F. F. Lima1; E. C. Vilela1

1Centro Regional de Ciências Nucleares, 50740-540, Recife-Pe, Brasil
2Departamento de Energia Nuclear, Universidade Federal de Pernambuco, 50740-540, Recife-Pe, Brasil
3Departamento de Genética, Universidade Federal de Pernambuco, 50670-901, Recife-Pe, Brasil

odinilsonbrandao@hotmail.com

(Received on 02 de junho de 2011; accepted on 03 de novembro de 2011)

Há uma preocupação crescente sobre os membros de companhias aéreas (cerca de um milhão em todo o mundo) expostos a doses mensuráveis de nêutrons. Historicamente, ensaios de dosimetria citogenética têm sido baseados na quantificação de alterações cromossômicas assimétricas (dicêntricos, anéis e fragmentos acêntricos) em linfócitos T estimulados para entrar em mitose após a exposição à radiação. O aumento dos níveis de danos cromossômicos em linfócitos do sangue periférico é um indicador sensível de exposição à radiação e é rotineiramente explorado para avaliar a dose de radiação absorvida após exposição acidental ou ocupacional. Como acidentes radiológicos não ocorrem com grande frequência, nem todas as nações julgam ser economicamente viável manter a competência biodosimétrica. Contudo, o acesso seguro aos recursos de dosimetria biológica é fundamental em casos de acidentes. Neste trabalho, uma curva dose-resposta foi medida para a indução de alterações cromossômicas em linfócitos do sangue periférico após exposição crônica \textit{in vitro} a um campo misto nêutron-gama. O sangue foi obtido de um doador saudável e exposto a duas fontes de 241AmBe (20 Ci) no Laboratório de Calibração Neutrônica (NCL – CRCN/NE – PE – Brasil). As doses absorvidas avaliadas foram de 0,2 Gy; 1,0 Gy e 2,5 Gy. Os cromossomos dicêntricos foram observados na metáfase, após utilização de Colcemid e 1000 metáfases foram analisadas por dois avaliadores após coloração por Gisme a 5%. Os resultados mostraram uma dependência linear entre a dose absorvida e a frequência de dicêntricos. A curva dose-resposta descrita neste documento contribuirá para a construção de curva de calibração que será usada em nosso laboratório de dosimetria biológica.

Palavras-chave: Dosimetria biológica, campo misto nêutron-gama, método citogenético

There is increasing concern about airline crew members (about one million worldwide) exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose–response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure \textit{in vitro} to mixed gamma-neutron field. Blood was obtained from one healthy donor and exposed to two mixed gamma-neutron field from sources 241AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL – CRCN/NE – PE – Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of dicentrics by two expertises after painting by Giesma 5%. The preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry.

Keywords: Biological dosimetry, mixed gamma-neutron field, cytogenetic method

1. INTRODUCTION

Biological dosimetry is one of the important research subjects in the field of radiation protection. The major concern is to estimate radiation dose by measurement of biological
changes in exposed persons after irradiation. In addition, it may be possible to predict the future
effect on health by a long-term follow-up study of radiation effects. A brief introduction is given
of the practices and the future aspects of research work in biological dosimetry using
chromosome aberration analysis in this laboratory [1].

A significant number of people have the potential to be occupationally exposed over a
protracted period to low doses of neutrons. There is increasing concern about airline crew
members (about one million worldwide) are exposed to measurable neutrons doses [2].

Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical
chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated
T-lymphocytes in their first mitosis after radiation exposure [3].

Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive
indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed
dose after accidental or occupational exposure. The dicentric assay technique in human
peripheral blood lymphocytes has been shown as the most sensitive method of quantifying the
radiation dose in the absence of physical measurements because of its ability to estimate the
average whole-body dose [3].

Establishing a competent biodosimetry laboratory that is capable of performing cytogenetic
analysis for dose estimation is of paramount importance in a country like Brazil, where large
use of radioactive substances for peaceful purposes are in place. It has been suggested that each
laboratory intended to carry out biological dosimetry should have its own in vitro dose–response
calibration curve for dose reconstruction [4].

Since radiological accidents are not common, not all nations feel that it is economically
justified to maintain biodosimetry competence. However, dependable access to biological
dosimetry capabilities is completely critical in event of an accident [5].

In order to estimate a radiation dose absorbed during an accident it is necessary a reference in
vitro calibration curve. This curve is generated by irradiating blood samples, collected from
control donors, with several doses of radiation [6].

The dose response curve for induction of exchange aberrations induced by low LET
radiations is linear-quadratic, exemplifying contributions of both one and two track events and
generally fits the equation:

\[
Y = A + aD + bD^2
\]

where \(Y\) is the yield of dicentrics, \(D\) is the dose, \(A\) is the background frequency, \(a\) is the linear
coefficient and \(b\) is the dose-squared coefficient. With chronic exposure (low dose rate) to low
LET radiation, the yield of dicentrics is linear. Following high LET radiation, the dose response
for induction of dicentrics is predominantly linear.

This paper aimed to establish a dose-response curve based on dicentric assay through
irradiation of blood samples by mixed gamma-neutron field.

2. MATERIALS AND METHODS

2.1 Blood samples

Heparinised blood (10 mL) was taken from one healthy individual, male, and 24 years old, at
the Laboratory of Biological Dosimetry (LBD – CRCN/NE CNEN – PE – Brazil). The sample
was divided equally (5 mL + 5 mL) between two culture tubes. One of them was irradiated and
another kept at room temperature (~20 °C).

2.2 Irradiation

Blood was exposed to two mixed gamma-neutron field sources \(^{241}\text{AmBe} (20 \text{ Ci})\) at the
Neutron Calibration Laboratory (NCL – CRCN/NE – PE – Brazil). The distance between the
sources and the sample was 3.75 cm (the centre of the sample was assumed to be the
geometrical centre of the liquid in the tube, taking as main axis the one perpendicular to the
beam direction). A polyethylene barrier (2mm) involving the tubes containing the samples was used to ensure the electronic equilibrium. Both of the sources were calibrated and the emission rate was determined to be \((4.46 \pm 0.07) \times 10^6\) n/s in 03/15/2005. At the irradiation position, spectrum was determined using a Bonner Sphere System manufactured by LUDLUM Measurements Inc., model 42-5. Immediately after exposure, both of the blood samples were cultured. The samples received doses of 0.20; 0.41 and 0.91 Gy of mixed gamma-neutron field.

2.3 Cell culture

From each sample, two blood cultures were set up. Lymphocytes were cultured for 48 hours in RPMI 1640 media (Sigma), supplemented with 20% (v/v) fetal calf serum, 1% (v/v) hytohemaglutinin (Biological Industries), 1% Hepes (v/v) and 50 µg/mL streptomycin. 0.05 µg/mL Colcemid (Biological Industries) was added 46 hours after culture started. The cells were harvested by centrifugation of the samples and the cell pellets were resuspended in 0.075 M KCl and kept for 15 min at 37°C. After the hypotonic shock the cells were fixed 3 times in methanol:acetic acid (3:1). Finally, cells were dropped on clean slides and stained with a 5% Giemsa solution (Merk). One thousand well-spread metaphases were analyzed for the presence of dicentrics by two experienced scorers.

2.4 Scoring criteria

Scoring of chromosomal aberrations was performed directly at the optical microscope (Quimis Q708SK-5). Only cells at the first mitosis (colcemid blocked) were scored.

3. RESULTS AND DISCUSSION

Koksal et al. [7] demonstrated that in vitro tests generate similar effects to those observed by exposure to radiation in vivo. Several calibration curves were constructed by using dicentrics and this model is universally accepted.

The person whose blood sample was used for irradiation with different doses not reported through the questionnaires, the existence of any criterion that makes it unfit to participate in this study. This individual is a young adult, non-smoker who claims not to consume illegal drugs. In addition, the volunteer was not submitted to any procedure or diagnostic radiology during course of experimental activities and, still, before six months the beginning. In sum, no factor was detected in the questionnaire that could substantially change the results. The frequency of natural chromosomal alterations of the individual remained constant in the different phases in which samples were collected for irradiation (Table 1).

| Table 1 - Frequency of chromosomal changes in the samples not irradiated (control) |
|-------------------------------|------------------|------------------|------------------|
| Control | N° of metaphases | N° of dicentrics | Dicentric frequencies |
| 1 | 1000 | 1 | 0.001 |
| 2 | 1027 | 1 | 0.0009 |
| 3 | 1022 | 1 | 0.0009 |

For the construction of the calibration curve, it was used net values observed in Table 2.
Table 2 - Data used to fit the dose-response curve by CABAS

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>N° of metaphases</th>
<th>Dicentric chromosomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.206</td>
<td>1000</td>
<td>27</td>
</tr>
<tr>
<td>0.413</td>
<td>1027</td>
<td>33</td>
</tr>
<tr>
<td>0.964</td>
<td>1022</td>
<td>95</td>
</tr>
</tbody>
</table>

These data were used in the computer program CABAS [5]. This software was developed specifically for biological dosimetry, and its objective is basically the determination of the adjustment parameters for the establishment of calibration curves based on chromosomal unstable alterations and/or micronuclei, in addition to the stable chromosomal changes viewable by FISH.

The experimental data obtained have led the curve shown in Figure 1.

![Figure 1 - Dose-response curve generated by CABAS](image)

The curve fit equation is expressed by:

\[Y = 0.0009 + 0.112D + 0.444D^2 \] \hspace{1cm} (2)

where \(Y \) is the frequency of chromosomal alterations and \(D \) is the dose in gray (Gy).

These coefficients are comparable to those found by Lloyd et al. [8], where it was generated a calibration curve from the irradiation of blood samples by neutrons from a cyclotron. These neutrons had energies of 7.6 MeV and the curve fit equation was:
The difference observed in the linear coefficient is attributed to the difference in the composition of the irradiation field, since the source of \(^{241}\)AmBe presents a gamma component, usually 1:1 on neutron [4], leading to greater production of chromosomal alterations induced by low-LET radiation.

The data obtained are in agreement with other already published and in use in some laboratories for biological dosimetry, which shows the possibility of using this calibration curve in case of radiological emergency.

4. CONCLUSION

This work enabled the establishment of a calibration curve for biological dosimetry in human peripheral blood lymphocytes to mixed gamma-neutron field. This curve is used exclusively in the laboratory of biological dosimetry for the determination of absorbed dose in individuals occupationally exposed, or that perhaps, could suffer accidental exposure to such radiation. Furthermore, this procedure could be routinely used to complement the physical dosimetry.

5. ACKNOWLEDGMENTS

The authors would like to acknowledge the financial assistance from CNPq, CAPES and CNEN.