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Neste trabalho, o cálculo do fator de desvantagem é feito por uma versão do método de Ordenadas do 

Discretas Analítico (método ADO). Para isso, será considerada uma classe de problemas de transporte de 

nêutrons unidimensionais em geometria Cartesiana, com efeitos de espalhamento linearmente 

anisotrópicos em meios heterogêneos em camadas. O processo consiste em aplicar a discretização angular 

SN, convertendo a equação de transporte integro-diferencial em um sistema de equações diferenciais 

ordinárias, cuja solução homogênea é obtida por um problema de autovalores quadráticos com ordem 

reduzida. Para estabelecer uma solução de forma fechada para esta classe de problemas, soluções 

particulares em termos de constantes são usadas, bem como condições de fronteira reflexivas e condições 

de interface. Afim de validar o código, o método e para fornecer resultados benchmark, uma classe 

problemas em duas camadas é tratado. Uma breve discussão sobre a influência da anisotropia é feita e 

aspectos numéricos são discutidos.  
Palavras-chave: meio heterogêneo, espalhamento anisotropico, equação de transporte unidimensional  

 

In this work, the disadvantage-factor calculation is performed by a version of the Analytical Discrete 

Ordinates method (ADO method). For this, a class of one-dimenisional neutron transport problems in 

Cartesian geometry, with linearly anisotropic scattering effects in layered heterogeneous media, will be 

considered. The process consists in applying the angular discretization SN, converting the integro-

differential transport equation into an ordinary differential equations system, which homogeneous 

solution is obtained by a quadratic eigenvalues problem with reduced order. To establish a closed form 

solution for this class of problems, particular solutions in terms of constants are used, as well as reflective 

boundary conditions and interface conditions. In order to validate the code, the method and to provide 

benchmark results, a class of two-layered problems is treated. A brief discussion on the influence of 

anisotropy is made and numerical aspects are discussed.  

Keywords: heterogeneous medium, anisotropic scattering, one-dimensional transport equation 

1. INTRODUCTION 

The disadvantage factor (𝛏), defined as the ratio between the average fluxes in the moderator 

and the fuel, is a recurring research topic in the design of heterogeneous reactors [1]. Also called 

shielding factor, this quantity is important for thermal utilization estimatives, mainly for 

criticality calculations and flux peaking evaluations. 

Along the years, many authors have contributed in calculating this quantity with different 

approaches. Ferziger and Robinson (1965) [2], for example, used singular eigenfunctions 

expansions to perform disadvantage factor calculations in a slab geometry with isotropic 

scattering. Later, Bond and Siewert (1969) [3] extended their approach considering a second 

anisotropic scattering term on the moderator. More recently, Abdallah, El-Sherbiny and Sobhy 

(1994) [4] included the anisotropic effects also on the fuel region and applied the PN method 

with spatial expansion. 

However, studies about the real influence of some physical parameters, such as core 

dimension (fuel/moderator) and anisotropy degree on the moderator region are still 
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controversial issue among researchers [5,6]. Eccleston and McCormick (1970) [7], applying the 

Case method for an ideal problem, concluded that a second angular momentum of the scattering 

kernel significantly influences the disadvantage factor. On the other hand, Laletin et al. (1974) 

[8] obtained different results using Galerkin method, concluding that second or higher 

anisotropic scattering momenta were not necessary. Maiorino and Siewert (1980) [9], using FN 

method, also disagreed with Eccleston and McCormick in some test-cases. 

Therefore, the contribution of this work will be to the study of the anisotropy influences on 

the disadvantage factor and on the scalar flux behavior, and to provide some benchmark results 

by applying of the ADO method for treating a class of one-dimensional neutron transport 

problems, in Cartesian geometry, considering non-multiplicative heterogeneous media with 

linearly anisotropic scattering. The ADO method [10] has been intensively and successfully 

used to find closed form solutions, in a concise and accurate way, for a wide range of one-

dimensional Rarefied Gas Dynamics (RGD) problems [11,12] and neutron transport problems in 

different geometries [13,14,15]. Due to the good features of this approach, including the 

independence from iterative schemes and the explicit solution (analytical in terms of the spatial 

variable), it has contributed to, in the computational point of view, a more efficient formulation. 

Along with these aspects, the reduced order of the derivation-associated eigenvalue problems 

also contribute to the low computational cost. 

Thus, in the next sections, a heterogeneous version of the one-dimensional discrete ordinates 

neutron transport equation is introduced. Next, following the ADO formulation, a reduced order 

eigenvalue problem is obtained for each layer. Then, homogeneous and particular solutions are 

explicitly defined, completing the general solution for the proposed problems. Finally, 

numerical results and computational aspects are discussed. 

2. MATHEMATICAL MODEL 

In order to calculate the disadvantage factor, Barros et al. (2010) [16] and Maiorino and 

Siewert (1980) [9] works were used as a basis, and the discrete ordinates version for a neutron 

transport equation in one-dimensional Cartesian geometry, applied to a layered heterogeneous 

medium with linearly anisotropic scattering, in steady-state regime, is written as 

 

μi

d

dx
Ψα(x,μi)+σt,αΨα(x,μ

i) = 

 

                                  
σs0,α

2
∑ wk

N
k=1 Ψα(x,μ

k) +
3

2
σs1,αμi ∑ wk

N
k=1 μkΨα(x,μ

k)+Qα(x,μ
i),  (1) 

 

with 𝐢 = 𝟏,… , 𝐍, being 𝐍 associated to the number of discrete directions of the Gauss-Legendre 

quadrature set [17], 𝛂 = 𝟏,… ,𝐌, where 𝐌 corresponds to the number of layers in which the 

domain is subdivided, 𝐱 [cm] and 𝛍𝐢 are, respectively, the spatial and directional variables 

wherein the angular fluxes 𝚿𝛂 [n/cm2.s] are evaluated. The weights 𝐰𝐤 are associated to the 

Gauss-Legendre points 𝛍𝐤, 𝐐𝛂 [n/cm3.s] represents a neutron source inside the layer 𝛂,  𝛔𝐭,𝛂 

[cm-1], 𝛔𝐬𝟎,𝛂 [cm-1] and 𝛔𝐬𝟏,𝛂 [cm-1] are the total, isotropic and linearly anisotropic macroscopic 

cross sections for the layer 𝛂. In particular, the scattering coefficients will be defined here as 

 
σs0,α = σt,α − σa,α  (2) 

 

and 

 

σs1,α =
σs0,αβ

3
,  (3) 

 

for each layer 𝛂, with 𝛔𝐚,𝛂 [cm-1] being the absorption macroscopic cross section and 𝛃 

representing a Legendre coefficient in an expansion of the scattering kernel. 
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For the ADO method application [10], the discrete directions are rearranged so that, for 𝐢 =
𝟏,… , 𝐍/𝟐, 𝛍𝐢 corresponds to the positive directions and −𝛍𝐢 is relative to the negative 

directions. Consequently, Eq. (1) is subdivided in two, as  

 

μi

d

dx
Ψα(x,μi

)+σt,αΨα(x,μ
i
) = 

σs0,α

2
∑ wk

N/2
k=1 [Ψα(x,μ

k
) + Ψα(x, − μ

k
)] +

3

2
σs1,αμi ∑ wk

N 2⁄
k=1 μk[Ψα(x,μ

k
) − Ψα(x, − μk)]+Q

α
(x, μi) (4) 

 

and 

 

−μi

d

dx
Ψα(x, − μi)+σt,αΨα(x, − μi) = 

σs0,α

2
∑ wk

N 2⁄
k=1 [Ψα(x,μ

k
)+Ψα(x, − μk)]  −

3

2
σs1,αμi ∑ wk

N 2⁄
k=1 μk[Ψα(x,μ

k
) − Ψα(x, − μk)]+Q

α
(x,−μi), (5) 

 

for 𝐢 = 𝟏,… , 𝐍/𝟐 and 𝛂 = 𝟏,… ,𝐌. 

On the formulation presented here, there are neutron sources located inside some of the layers 

𝛂, so particular solutions will be needed. 

 

 

 

 

 

 

 

 

 
Figure 1: Description of the domain division in a heterogeneous neutron transport problem. 

3. THE ADO METHOD 

Following some basic steps of the ADO method, a homogeneous solution for the transport 

problem described by Eqs. (4) and (5) is proposed in the form 

 

Ψα(x, ± μi)=Φα(να, ±μi)e
−x να⁄ ,  (6) 

 

for  𝐢 = 𝟏,… , 𝐍/𝟐, 𝛂 = 𝟏,… ,𝐌, where the separation constant 𝛎𝛂 is associated with the 

elementary solution 𝚽𝛂(𝛎𝛂, ±𝛍𝐢). 
This way, substituting Eq. (6) into Eqs. (4) and (5), the algebraic systems 

 

−
μi

να

Φα(να,μ
i
)+σt,αΦα(να,μ

i
) = 

            
σs0,α

2
∑ wk

N 2⁄
k=1 [Φα(να,μ

k)+Φα(να,−μk)] +
3

2
σs1,αμi ∑ wk

N 2⁄
k=1 μk[Φα(να,μ

k) − Φα(να, −μk)] (7) 

 

and 

 
μi

να

Φα(να, −μi)+σt,αΦα(να,−μi) = 

σs0,α

2
∑ wk

N 2⁄
k=1 [Φα(να,μ

k)+Φα(να,−μk)] −
3

2
σs1,αμi ∑ wk

N 2⁄
k=1 μk[Φα(να,μ

k) − Φα(να, −μk)],  (8) 

 

for  𝐢 = 𝟏,… , 𝐍/𝟐 and 𝛂 = 𝟏,… ,𝐌  are obtained. 

Now, two auxiliary functions are defined as 

 
Uα(να,μ

i
)=Φα(να,μ

i
)+Φα(να, −μi),  (9) 

 
Vα(να,μ

i
)=Φα(να,μ

i
) − Φα(να, −μ

i
),  (10) 
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such that, if Eqs. (7) and (8) are added, the expression 

 

Vα(να,μ
i
) =

να

μi
[σt,αUα(να,μ

i
) − σs0,α ∑ wk

N 2⁄
k=1 Uα(να,μ

k
)]  (11) 

 

is obtained. 

Now, subtracting Eq. (8) from Eq. (7), another relation between 𝐔𝛂(𝛎𝛂,μ
𝐢) and 𝐕𝛂(𝛎𝛂,μ

𝐢) is 

obtained, and it is given by 

 

−
μi

να
Uα(να,μ

i
)+σt,αVα(να,μ

i
) = 3σs1,αμi ∑ wk

N 2⁄
k=1 μ

k
Vα(να,μ

k
).  (12) 

 

From Eqs. (11) and (12), after some algebraic manipulations, an eigenvalue problem in terms 

of 𝐔𝛂(𝛎𝛂,μ
𝐢) is written in the form 

 
1

να
2 Uα(να,μ

i
) =

σt,α
2

μi
2 Uα(να,μ

i
) − ∑ wk

N 2⁄
k=1 [

σt,ασs0,α

μi
2 + 3σt,ασs1,α − 3σs0,ασs1,α (∑ wj

N 2⁄
j=1 )]Uα(να,μ

k
),  (13) 

 

for 𝐢 = 𝟏,… , 𝐍/𝟐 and  𝛂 = 𝟏,… ,𝐌. The matrix representation of Eq. (13) is given by 

 

[Dα − Aα]Uα
⃗⃗⃗⃗  ⃗=λαUα

⃗⃗⃗⃗  ⃗,  (14) 

 

where 𝐔𝛂
⃗⃗⃗⃗  ⃗ is a vector with components 𝐔𝛂(𝛎𝛂,μ

𝐢), and 

 

λα =
1

να
2 .  (15) 

 

The 𝐍 𝟐⁄ 𝐱 𝐍 𝟐⁄  matrices in Eq. (14) are such that 

 

Dα = diag [
σt,α

2

μ1
2 ,

σt,α
2

μ2
2 , … ,

σt,α
2

μN 2⁄
2 ]  (16) 

 

and 

 

Aα(i,k)=wk [
σt,ασs0,α

μi
2 + 3σt,ασs1,α − 3σs0,ασs1,α (∑ wj

N 2⁄
j=1 )],  (17) 

 

for 𝐢, 𝐤 = 𝟏,… , 𝐍/𝟐 and  𝛂 = 𝟏,… ,𝐌. 

With the eigenvalue problem solved, the values of 𝛌𝛂,𝐣 for 𝐣 = 𝟏,… , 𝐍/𝟐 are obtained, such 

that the separation constants 𝛎𝛂,𝐣 are found by Eq. (15) and, from Eqs. (9) and (10), the 

elementary solution can be written as 

 

Φα(να,j,μi
) =

1

2
[Uα(να,j,μi

)+Vα(να,j,μi
)]  (18) 

 

and 

 

Φα(να,j, −μi) =
1

2
[Uα(να,j,μi

) − Vα(να,j,μi
)],  (19) 

 

for 𝐢, 𝐣 = 𝟏,… , 𝐍/𝟐 and  𝛂 = 𝟏,… ,𝐌. 
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Since the separation constants occur in pairs, {±𝛎α,j}, with real values, and using the 

symmetry properties of the elementary solutions 

 
Φα(να,j,μi

)=Φα(−να,j, −μi),  (20) 

 
Φα(να,j, −μi)=Φα(−να,j,μi

),  (21) 

 

the homogeneous solutions for Eqs. (4) and (5), in an explicit form, are given by 

 

Ψα
h(x, μi) = ∑ Aα,j

N 2⁄
j=1 Φα(να,j, μi)e

−(x−xα−1) να,j⁄ + Aα,j+N 2⁄ Φα(−να,j, μi)e
−(xα−x) να,j⁄   (22) 

 

and 

 

Ψα
h(x, −μi) = ∑ Aα,j

N 2⁄
j=1 Φα(να,j, −μi)e

−(x−xα−1) να,j⁄ + Aα,j+N 2⁄ Φα(−να,j, −μi)e
−(xα−x) να,j⁄   (23) 

 

for 𝐢 = 𝟏,… , 𝐍/𝟐 and each region  𝛂 = 𝟏,… ,𝐌. Here, the arbitrary constants 𝐀α,j are to be 

determined, and they depend on the boundary conditions and particular solutions. 

It is important to observe that, in this formulation, from a set of 𝐍 discrete ordinates 

equations, an eigenvalue problem of order 𝐍/𝟐 was derived, which means a relevant gain in 

comparison with other similar discrete ordinates approaches, where characteristic equations or 

eigensystems of order 𝐍 are obtained, for the same quadrature scheme [16]. Furthermore, the 

expressions for the homogeneous solutions, in terms of spatial variable, are analytical, 

contributing to the low computational cost and high accuracy of the method. 

4. PARTICULAR SOLUTION 

Since the problem formulated by Eq. (1) has a non-homogeneous source term, particular 

solutions are needed. For that, if the neutron sources were constant in each layer α and each 

direction ±μi, simpler particular solutions in terms of constants can be defined. So, for  i =
1,… , N/2, 

 
Ψα

p(x, μi) = Bα,i  (24) 

 

and 

 
Ψα

p(x, −μi) = Cα,i  (25) 

 

are taken such that, substituting them into Eqs. (4) and (5), a coupled N x N linear system is 

obtained, as follows 

 

[Pα − Rα]Oα
⃗⃗⃗⃗  ⃗ = Sα

⃗⃗⃗⃗ ,  (26) 

 

where 

 
Pα = diag[σt,α, … , σt,α],  (27) 

 

Rα(i, k) = [
[
σs0,α

2
wk +

3

2
σs1,αμiμkwk] [

σs0,α

2
wk −

3

2
σs1,αμiμkwk]

[
σs0,α

2
wk −

3

2
σs1,αμiμkwk] [

σs0,α

2
wk +

3

2
σs1,αμiμkwk]

],  (28) 

 

Oα
⃗⃗⃗⃗  ⃗ = [

[Bα,i]

[Cα,i]
]  (29) 
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and 

 

Sα
⃗⃗⃗⃗ = [

[Qα(x, μi)]

[Qα(x, −μi)]
],  (30) 

 

for i, k = 1,… , N/2 and  α = 1,… ,M. 

With the linear system solved, the particular solutions are obtained and the general solutions 

will be given by 

 

Ψα(x, ±μi) = Ψα
h(x, ±μi) + Ψα

p(x, ±μi)  (31) 

 

for i = 1,… , N/2 and  α = 1,… ,M. 

5. COUPLING SYSTEM 

In order to explicitly define the solutions for the problem proposed here, the reflective 

boundary conditions 

 
Ψ1(x0, μi

) = Ψ1(x0, −μ
i
),  (32) 

 
ΨM(xM, μ

i
) = ΨM(xM, −μ

i
),  (33) 

 

are used for 𝐢 = 𝟏,… , 𝐍/𝟐 and, to ensure the uniformity of the fluxes between the neighboring 

regions, the interface condition is given by 

 
Ψα(xα, ±μ

i
) = Ψα+1(xα, ±μ

i
),  (34) 

 

for 𝐢 = 𝟏,… , 𝐍/𝟐 and 𝛂 = 𝟏,… ,𝐌 − 𝟏. 

Eqs. (32)-(34) lead to a 𝐌𝐍 𝐱 𝐌𝐍 system which solution provides the value of all 𝐀𝛂,𝐣 

coefficients and, consequently, makes Eq. (31) become completely established. After that, 

relevant quantities can be computed, such as the disadvantage factor and scalar flux. 

6. NUMERICAL RESULTS AND COMPUTATIONAL ASPECTS 

For the approach presented here, a two layered test case was considered (Table 1 and Figure 

2), representing the fuel and moderator regions of a basic reactor cell, where it was possible to 

compare the ADO method to other analytical and numerical methods for validation and provide 

some benchmark profiles. In particular, the Case method’s results were used here as the 

principal benchmark because of its analytical features. Following Maiorino and Siewert [9], the 

discrete ordinates version of the disadvantage factor can be given by 

 

ξ =
a

b−a

∫ ∑ wk[Ψ2(x,μk)+Ψ2(x,−μk)]
N/2
k=1

b

a
dx

∫ ∑ wk[Ψ1(x,μk)+Ψ1(x,−μk)]
N/2
k=1

a

0
dx

,  (35) 

 

where α = 1,2 represent, respectively, the fuel and the moderator regions, while the discrete 

ordinates version of the scalar flux is calculated by 

 

ϕα(x) =
1

2
∑ wk[Ψα(x, μk) + Ψα(x, −μk)]

N/2
k=1   (36) 

 

for each layer α. 
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Table 1: Parameters used on the solution of the proposed problem. 

 x σt,α σa,α β Qα(x, ±μi) 

Region 1 (fuel) 0.0 ≤ x ≤ a 0.717 0.32 0.00 0.00 

Region 2 (moderator) a ≤ x ≤ b 2.33 0.0195 Selected cases σt,2(1 − σs0,2 σt,2⁄ ) 

 

 

 
Figure 2: Description of the two-layer heterogeneous problem based on Reference [9]. 

 

 

Is important to observe that all the profiles were generated by a developed code in the free 

software Octave 4.0, using double precision computation and 80-points Gauss-Legendre 

quadrature set. Besides that, in terms of convergence, the four significant digits presented on 

Tables 2-3 for the ADO method do not change using N > 80, ensuring the confidence of the 

results. 

 
Table 2: Disadvantage factor validation to four types of cell dimensions. 

Computational model β 

Cell 1 

a = 0.10  

b = 0.45  

Cell 2 

a = 0.20  

b = 0.90  

Cell 3 

a = 0.30  

b = 1.35  

Cell 4 

a = 0.40  

b = 1.80  

P1 Theory [3] 0.0 1.028 1.113 1.253 1.447 

Case Method [3] 0.0 1.0978 1.2317 1.4077 1.6284 

P1 Spatial Approx. [4] 0.0 1.1033 1.2311 1.3870 1.5742 

Asymptotic Diffusion Theory [5] 0.0 1.06 1.18 1.34 1.56 

Modified ABH Method [18] 0.0 1.08 1.20 1.36 1.58 

S8 Method [18] 0.0 1.09 1.23 1.43 1.64 

Integral Transport Theory [19] 0.0 1.0979 1.2318 1.408 1.629 

ADO - S80 (this work) 0.0 1.0976 1.2316 1.4075 1.6283 

P1 Theory [3] 0.1 1.027 1.110 1.245 1.433 

Case Method [3] 0.1 1.0970 1.2283 1.4001 1.6151 

P1 Spatial Approx. [4] 0.1 1.1026 1.2285 1.3812 1.5638 

ADO - S80 (this work) 0.1 1.0967 1.2282 1.3999 1.6150 

P1 Theory [3] 0.3 1.026 1.103 1.230 1.407 

Case Method [3] 0.3 1.0953 1.2215 1.3849 1.5885 

P1 Spatial Approx. [4] 0.3 1.1013 1.2233 1.3695 1.5431 

ADO - S80 (this work) 0.3 1.0950 1.2213 1.3848 1.5884 
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Table 3: Disadvantage factor validation to four types of cell dimensions. 

Computational model β 

Cell 1 

a = 0.10  

b = 0.45  

Cell 2 

a = 0.20  

b = 0.90  

Cell 3 

a = 0.30  

b = 1.35  

Cell 4 

a = 0.40  

b = 1.80  

P1 Theory [3] 0.6 1.023 1.093 1.207 1.366 

Case Method [3] 0.6 1.0927 1.2113 1.3621 1.5485 

P1 Spatial Approx. [4] 0.6 1.0994 1.2156 1.3521 1.5121 

ADO - S80 (this work) 0.6 1.0924 1.2111 1.3620 1.5484 

P1 Theory [3] 0.9 1.021 1.082 1.184 1.326 

Case Method [3] 0.9 1.0901 1.2010 1.3392 1.5083 

P1 Spatial Approx. [4] 0.9 1.0974 1.2078 1.3346 1.4810 

ADO - S80 (this work) 0.9 1.0898 1.2009 1.3391 1.5082 

Case Method [7] 2.0 - 1.1634 - 1.3599 

P3 Theory [8] 2.0 - 1.1114 - 1.3114 

P1 Spatial Approx. [4] 2.0 1.0903 1.1793 1.2706 1.3672 

ADO - S80 (this work) 2.0 1.0804 1.1632 1.2549 1.3598 

 

Based on the Tables 2-3 and Figure 3, some considerations can be made. Firstly, the 

moderator anisotropy causes a reduction of the disadvantage factor, independent of the cell 

dimension, Figure 3 (a). Besides that, this decreasing rate depends on the thickness when 

comparing the moderator and the fuel regions. On the other hand, for a same moderator 

anisotropic level, the increasing size of the cell (fuel/moderator) leads to higher values of this 

factor. These effects can also be noted on the scalar fluxes results, Figures 3 (b)-(e), in the 

heights and flattened shape of the profiles. Thus, it can be concluded that the moderator 

anisotropy and the cell dimension are directly associated to the thermal efficiency of a reactor. 

Comparing the profiles, the Tables 2-3 makes clear that the values obtained by the ADO 

method are closer to the Case method, which relative error does not exceed 0.03%. While in the 

other references the agreement among themselves is around one or two significant digits and, 

when compared to the Case method, they may have relative errors greater than 12.0%. 
 

 
a) Disadvantage factor for all cells. 

 
b) Scalar flux profiles for Cell 1. 

 
c) Scalar flux profiles for Cell 2. 

 
d) Scalar flux profiles for Cell 3. 
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e) Scalar flux profiles for Cell 4. 

 

Figure 3: Profiles computed by the ADO method (this work) using S80 quadrature scheme, 

considering the variation of some parameters. 

7. CONCLUSIONS 

The present work shows the ADO method as a good alternative on the solution of a class of 

heterogeneous neutron transport problems, in one-dimensional Cartesian geometry, where it was 

possible to compare some results with the available literature and provide some benchmark 

profiles. 

On the results presented in this study, the performance of ADO method can be identified by 

the good agreement with the Case method (up to three significant digits and relative error lower 

than 0.03%) compared to other referred formulations in the literature. Also, the influence of 

some parameters could be evaluated on the process, such as the effect of the anisotropy 

coefficient on the behavior of the disadvantage factor and scalar flux profiles. 

Here, some good features of the ADO method can be highlighted: hence it doesn't use a 

computational spatial grid to evaluate the angular fluxes, the calculations can be made without 

iterative schemes, making the computational effort relatively low and spending less than 2 s (in 

a 3.10 GHz Intel Core I5 processor with 8GB of RAM) for each profile. Part of this 

performance was also due to the reduced order eigenvalues systems and the explicit form of the 

solutions (analytical in terms of the spatial variable) even in a layered domain. The code, which 

implementation is simple, was developed making use of the free software Octave 4.0, accepting 

arbitrary quadrature schemes, and working with any quadrature order. Besides that, all involved 

systems are well-conditioned and the parameters that arise during the process are real, making 

the use of complex variable techniques be unnecessary. 

Thus, the objectives proposed in this work can be considered achieved, as it was possible to 

provide closed form solutions to the proposed problem in a concise and accurate way, showing 

profiles with compatible physical behavior in terms of parameters, proposal of solutions and 

boundary conditions used. 
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